Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Elife ; 122024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652113

RESUMO

Lymphoid restricted membrane protein (LRMP) is a specific regulator of the hyperpolarization-activated cyclic nucleotide-sensitive isoform 4 (HCN4) channel. LRMP prevents cAMP-dependent potentiation of HCN4, but the interaction domains, mechanisms of action, and basis for isoform-specificity remain unknown. Here, we identify the domains of LRMP essential for this regulation, show that LRMP acts by disrupting the intramolecular signal transduction between cyclic nucleotide binding and gating, and demonstrate that multiple unique regions in HCN4 are required for LRMP isoform-specificity. Using patch clamp electrophysiology and Förster resonance energy transfer (FRET), we identified the initial 227 residues of LRMP and the N-terminus of HCN4 as necessary for LRMP to associate with HCN4. We found that the HCN4 N-terminus and HCN4-specific residues in the C-linker are necessary for regulation of HCN4 by LRMP. Finally, we demonstrated that LRMP-regulation can be conferred to HCN2 by addition of the HCN4 N-terminus along with mutation of five residues in the S5 region and C-linker to the cognate HCN4 residues. Taken together, these results suggest that LRMP inhibits HCN4 through an isoform-specific interaction involving the N-terminals of both proteins that prevents the transduction of cAMP binding into a change in channel gating, most likely via an HCN4-specific orientation of the N-terminus, C-linker, and S4-S5 linker.


Assuntos
AMP Cíclico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Proteínas de Membrana , Proteínas Musculares , Receptores Citoplasmáticos e Nucleares , Transdução de Sinais , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , AMP Cíclico/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Animais , Ligação Proteica , Células HEK293 , Canais de Potássio/metabolismo , Canais de Potássio/genética , Canais de Potássio/química , Técnicas de Patch-Clamp , Transferência Ressonante de Energia de Fluorescência , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética
2.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37693562

RESUMO

Lymphoid restricted membrane protein (LRMP) is a specific regulator of the hyperpolarization-activated cyclic nucleotide-sensitive isoform 4 (HCN4) channel. LRMP prevents cAMP-dependent potentiation of HCN4 but the interaction domains, mechanisms of action, and basis for isoform-specificity remain unknown. Here we identify the domains of LRMP essential for regulation. We show that LRMP acts by disrupting the intramolecular signal transduction between cyclic nucleotide binding and gating. And we demonstrate that multiple unique regions in HCN4 are required for LRMP isoform-specificity. Using patch clamp electrophysiology and Förster resonance energy transfer (FRET), we showed that the initial 227 residues of LRMP and the N-terminus of HCN4 are necessary for LRMP to interact with HCN4. We found that the HCN4 N-terminus and HCN4-specific residues in the C-linker are necessary for regulation of HCN4 by LRMP. And we demonstrate that LRMP-regulation can be conferred to HCN2 by addition of the HCN4 N-terminus along with mutation of 5 residues in the S5 region and C-linker to the cognate HCN4 residues. Taken together, these results suggest that LRMP inhibits HCN4 through an isoform-specific interaction involving the N-terminals of both proteins that prevents the transduction of cAMP binding into a change in channel gating via an HCN4-specific orientation of the N-terminus, C-linker, and S4-S5 linker.

3.
Elife ; 122023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054969

RESUMO

Acid-sensing ion channels (ASICs) are trimeric proton-gated sodium channels. Recent work has shown that these channels play a role in necroptosis following prolonged acidic exposure like occurs in stroke. The C-terminus of ASIC1a is thought to mediate necroptotic cell death through interaction with receptor interacting serine threonine kinase 1 (RIPK1). This interaction is hypothesized to be inhibited at rest via an interaction between the C- and N-termini which blocks the RIPK1 binding site. Here, we use two transition metal ion FRET methods to investigate the conformational dynamics of the termini at neutral and acidic pH. We do not find evidence that the termini are close enough to be bound while the channel is at rest and find that the termini may modestly move closer together during acidification. At rest, the N-terminus adopts a conformation parallel to the membrane about 10 Å away. The distal end of the C-terminus may also spend time close to the membrane at rest. After acidification, the proximal portion of the N-terminus moves marginally closer to the membrane whereas the distal portion of the C-terminus swings away from the membrane. Together these data suggest that a new hypothesis for RIPK1 binding during stroke is needed.


Assuntos
Canais Iônicos Sensíveis a Ácido , Acidente Vascular Cerebral , Humanos , Sítios de Ligação , Morte Celular , Necroptose
4.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37461628

RESUMO

Acid-sensing ion channels (ASICs) are trimeric proton-gated sodium channels. Recently it has been shown that these channels play a role in necroptosis following prolonged acidic exposure like occurs in stroke. The C-terminus of the channel is thought to mediate necroptotic cell death through interaction with receptor interacting serine threonine kinase 1 (RIPK1). This interaction is hypothesized to be inhibited at rest via an interaction between the C-terminus and the N-terminus which blocks the RIPK1 binding site. Here, we use a combination of two transition metal ion FRET methods to investigate the conformational dynamics of the termini while the channel is closed and desensitized. We do not find evidence that the termini are close enough to be bound while the channel is at rest and find that the termini may modestly move closer together when desensitized. At rest, the N-terminus adopts a conformation parallel to the membrane about 10 Å away. The distal end of the C-terminus may also spend time close to the membrane at rest. After acidification, the proximal portion of the N-terminus moves marginally closer to the membrane whereas the distal portion of the C-terminus swings away from the membrane. Together these data suggest that a new hypothesis for RIPK1 binding during stroke is needed.

5.
Proc Natl Acad Sci U S A ; 120(16): e2217665120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036971

RESUMO

The mitochondrial calcium uniporter is a Ca2+ channel that imports cytoplasmic Ca2+ into the mitochondrial matrix to regulate cell bioenergetics, intracellular Ca2+ signaling, and apoptosis. The uniporter contains the pore-forming MCU subunit, an auxiliary EMRE protein, and the regulatory MICU1/MICU2 subunits. Structural and biochemical studies have suggested that MICU1 gates MCU by blocking/unblocking the pore. However, mitoplast patch-clamp experiments argue that MICU1 does not block, but instead potentiates MCU via allosteric mechanisms. Here, we address this direct clash of the proposed MICU1 function. Supporting the MICU1-occlusion mechanism, patch-clamp demonstrates that purified MICU1 strongly suppresses MCU Ca2+ currents, and this inhibition is abolished by mutating the MCU-interacting K126 residue. Moreover, a membrane-depolarization assay shows that MICU1 prevents MCU-mediated Na+ flux into intact mitochondria under Ca2+-free conditions. Examining the observations underlying the potentiation model, we found that MICU1 occlusion was not detected in mitoplasts not because MICU1 cannot block, but because MICU1 dissociates from the uniporter complex. Furthermore, MICU1 depletion reduces uniporter transport not because MICU1 can potentiate MCU, but because EMRE is down-regulated. These results firmly establish the molecular mechanisms underlying the physiologically crucial process of uniporter regulation by MICU1.


Assuntos
Cálcio , Proteínas de Transporte da Membrana Mitocondrial , Cálcio/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Canais de Cálcio/metabolismo , Membranas Mitocondriais/metabolismo , Cálcio da Dieta , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo
7.
Front Physiol ; 13: 928507, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795651

RESUMO

Hyperpolarization-activated, cyclic nucleotide-sensitive (HCN) channels are key regulators of subthreshold membrane potentials in excitable cells. The four mammalian HCN channel isoforms, HCN1-HCN4, are expressed throughout the body, where they contribute to diverse physiological processes including cardiac pacemaking, sleep-wakefulness cycles, memory, and somatic sensation. While all HCN channel isoforms produce currents when expressed by themselves, an emerging list of interacting proteins shape HCN channel excitability to influence the physiologically relevant output. The best studied of these regulatory proteins is the auxiliary subunit, TRIP8b, which binds to multiple sites in the C-terminus of the HCN channels to regulate expression and disrupt cAMP binding to fine-tune neuronal HCN channel excitability. Less is known about the mechanisms of action of other HCN channel interaction partners like filamin A, Src tyrosine kinase, and MinK-related peptides, which have a range of effects on HCN channel gating and expression. More recently, the inositol trisphosphate receptor-associated cGMP-kinase substrates IRAG1 and LRMP (also known as IRAG2), were discovered as specific regulators of the HCN4 isoform. This review summarizes the known protein interaction partners of HCN channels and their mechanisms of action and identifies gaps in our knowledge.

8.
J Gen Physiol ; 154(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35583813

RESUMO

Acid-sensing ion channels (ASICs) are sensitized to activation by inflammatory mediators such as the polyunsaturated fatty acid (PUFA) arachidonic acid (AA). Previous work has shown that AA can potentiate ASIC currents at subsaturating proton concentrations, but the structural mechanisms of this change in gating are not understood. Here we show that PUFAs cause multiple gating changes in ASIC3, including shifting the pH dependence of activation, slowing the rate of desensitization, and increasing the current even at a saturating pH. The impact on gating depends on the nature of both the head and tail of the lipid, with the head group structure primarily determining the magnitude of the effect on the channel. An N-acyl amino acid (NAAA), arachidonyl glycine (AG), is such a strong regulator that it can act as a ligand at neutral pH. Mutation of an arginine in the outer segment of TM1 (R64) eliminated the effect of docosahexaenoic acid (DHA) even at high concentrations, suggesting a potential interaction site for the lipid on the channel. Our results suggest a model in which PUFAs bind to ASICs via both their tail group and an electrostatic interaction between the negatively charged PUFA head group and the positively charged arginine side chain. These data provide the first look at the structural features of lipids that are important for modulating ASICs and suggest a potential binding site for PUFAs on the channel.


Assuntos
Canais Iônicos Sensíveis a Ácido , Arginina , Canais Iônicos Sensíveis a Ácido/metabolismo , Concentração de Íons de Hidrogênio , Lipídeos , Domínios Proteicos
9.
Channels (Austin) ; 15(1): 635-647, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34704535

RESUMO

Acid-sensing ion channels (ASICs) are a family of proton-gated cation channels that contribute to a diverse array of functions including pain sensation, cell death during ischemia, and more broadly to neurotransmission in the central nervous system. There is an increasing interest in understanding the physiological regulatory mechanisms of this family of channels. ASICs have relatively short N- and C-termini, yet a number of proteins have been shown to interact with these domains both in vitro and in vivo. These proteins can impact ASIC gating, localization, cell-surface expression, and regulation. Like all ion channels, it is important to understand the cellular context under which ASICs function in neurons and other cells. Here we will review what is known about a number of these potentially important regulatory molecules.


Assuntos
Canais Iônicos Sensíveis a Ácido , Neurônios , Canais Iônicos Sensíveis a Ácido/metabolismo , Membrana Celular/metabolismo , Neurônios/metabolismo , Ligação Proteica
10.
Proc Natl Acad Sci U S A ; 117(30): 18079-18090, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32647060

RESUMO

Ion channels in excitable cells function in macromolecular complexes in which auxiliary proteins modulate the biophysical properties of the pore-forming subunits. Hyperpolarization-activated, cyclic nucleotide-sensitive HCN4 channels are critical determinants of membrane excitability in cells throughout the body, including thalamocortical neurons and cardiac pacemaker cells. We previously showed that the properties of HCN4 channels differ dramatically in different cell types, possibly due to the endogenous expression of auxiliary proteins. Here, we report the discovery of a family of endoplasmic reticulum (ER) transmembrane proteins that associate with and modulate HCN4. Lymphoid-restricted membrane protein (LRMP, Jaw1) and inositol trisphosphate receptor-associated guanylate kinase substrate (IRAG, Mrvi1, and Jaw1L) are homologous proteins with small ER luminal domains and large cytoplasmic domains. Despite their homology, LRMP and IRAG have distinct effects on HCN4. LRMP is a loss-of-function modulator that inhibits the canonical depolarizing shift in the voltage dependence of HCN4 in response to the binding of cAMP. In contrast, IRAG causes a gain of HCN4 function by depolarizing the basal voltage dependence in the absence of cAMP. The mechanisms of action of LRMP and IRAG are independent of trafficking and cAMP binding, and they are specific to the HCN4 isoform. We also found that IRAG is highly expressed in the mouse sinoatrial node where computer modeling predicts that its presence increases HCN4 current. Our results suggest important roles for LRMP and IRAG in the regulation of cellular excitability, as tools for advancing mechanistic understanding of HCN4 channel function, and as possible scaffolds for coordination of signaling pathways.


Assuntos
Retículo Endoplasmático/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Animais , Células CHO , Linhagem Celular , Cricetulus , AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Modelos Biológicos , Família Multigênica , Miócitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Nó Sinoatrial/fisiologia , Nó Sinoatrial/fisiopatologia
11.
J Gen Physiol ; 152(3)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32012213

RESUMO

Stomatin (STOM) is a monotopic integral membrane protein found in all classes of life that has been shown to regulate members of the acid-sensing ion channel (ASIC) family. However, the mechanism by which STOM alters ASIC function is not known. Using chimeric channels, we combined patch-clamp electrophysiology and FRET to search for regions of ASIC3 critical for binding to and regulation by STOM. With this approach, we found that regulation requires two distinct sites on ASIC3: the distal C-terminus and the first transmembrane domain (TM1). The C-terminal site is critical for formation of the STOM-ASIC3 complex, while TM1 is required only for the regulatory effect. We then looked at the mechanism of STOM-dependent regulation of ASIC3 and found that STOM does not alter surface expression of ASIC3 or shift the pH dependence of channel activation. However, a point mutation (Q269G) that prevents channel desensitization also prevents STOM regulation, suggesting that STOM may alter ASIC3 currents by stabilizing the desensitized state of the channel. Based on these findings, we propose a model whereby STOM is anchored to the channel via a site on the distal C-terminus and stabilizes the desensitized state of the channel via an interaction with TM1.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Proteínas de Membrana/metabolismo , Animais , Células CHO , Linhagem Celular , Cricetulus , Eletrofisiologia/métodos , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/fisiologia , Neurônios/metabolismo , Domínios Proteicos/fisiologia , Ratos
12.
J Biol Chem ; 292(43): 17794-17803, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28864772

RESUMO

TRIP8b, an accessory subunit of hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels, alters both the cell surface expression and cyclic nucleotide dependence of these channels. However, the mechanism by which TRIP8b exerts these dual effects is still poorly understood. In addition to binding to the carboxyl-terminal tripeptide of HCN channels, TRIP8b also binds directly to the cyclic nucleotide-binding domain (CNBD). That interaction, which requires a small central portion of TRIP8b termed TRIP8bcore, is both necessary and sufficient for reducing the cAMP-dependent regulation of HCN channels. Here, using fluorescence anisotropy, we report that TRIP8b binding to the CNBD of HCN2 channels decreases the apparent affinity of cAMP for the CNBD. We explored two possible mechanisms for this inhibition. A noncompetitive mechanism in which TRIP8b inhibits the conformational change of the CNBD associated with cAMP regulation and a competitive mechanism in which TRIP8b and cAMP compete for the same binding site. To test these two mechanisms, we used a combination of fluorescence anisotropy, biolayer interferometry, and double electron-electron resonance spectroscopy. Fitting these models to our fluorescence anisotropy binding data revealed that, surprisingly, the TRIP8b-dependent reduction of cAMP binding to the CNBD can largely be explained by partial competition between TRIP8b and cAMP. On the basis of these findings, we propose that TRIP8b competes with a portion of the cAMP-binding site or distorts the binding site by making interactions with the binding pocket, thus acting predominantly as a competitive antagonist that inhibits the cyclic-nucleotide dependence of HCN channels.


Assuntos
AMP Cíclico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais de Potássio , Receptores Citoplasmáticos e Nucleares , Animais , Sítios de Ligação , AMP Cíclico/química , AMP Cíclico/genética , AMP Cíclico/metabolismo , Humanos , Domínios Proteicos , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Xenopus laevis
13.
Structure ; 23(4): 734-44, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25800552

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels underlie the cationic Ih current present in many neurons. The direct binding of cyclic AMP to HCN channels increases the rate and extent of channel opening and results in a depolarizing shift in the voltage dependence of activation. TRIP8b is an accessory protein that regulates the cell surface expression and dendritic localization of HCN channels and reduces the cyclic nucleotide dependence of these channels. Here, we use electron paramagnetic resonance (EPR) to show that TRIP8b binds to the apo state of the cyclic nucleotide binding domain (CNBD) of HCN2 channels without changing the overall domain structure. With EPR and nuclear magnetic resonance, we locate TRIP8b relative to the HCN channel and identify the binding interface on the CNBD. These data provide a structural framework for understanding how TRIP8b regulates the cyclic nucleotide dependence of HCN channels.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Proteínas de Membrana/metabolismo , Canais de Potássio/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Proteínas de Membrana/química , Camundongos , Dados de Sequência Molecular , Peroxinas , Canais de Potássio/metabolismo , Ligação Proteica , Xenopus
14.
Biophys J ; 108(3): 540-56, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25650922

RESUMO

The ability to measure the properties of proteins at the single-molecule level offers an unparalleled glimpse into biological systems at the molecular scale. The interpretation of single-molecule time series has often been rooted in statistical mechanics and the theory of Markov processes. While existing analysis methods have been useful, they are not without significant limitations including problems of model selection and parameter nonidentifiability. To address these challenges, we introduce the use of nonparametric Bayesian inference for the analysis of single-molecule time series. These methods provide a flexible way to extract structure from data instead of assuming models beforehand. We demonstrate these methods with applications to several diverse settings in single-molecule biophysics. This approach provides a well-constrained and rigorously grounded method for determining the number of biophysical states underlying single-molecule data.


Assuntos
Teorema de Bayes , Estatísticas não Paramétricas , Animais , Células HEK293 , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Cadeias de Markov , Modelos Teóricos , Método de Monte Carlo , Fatores de Tempo , Xenopus
15.
Nature ; 507(7490): 73-7, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24572362

RESUMO

Nitrate is a primary nutrient for plant growth, but its levels in soil can fluctuate by several orders of magnitude. Previous studies have identified Arabidopsis NRT1.1 as a dual-affinity nitrate transporter that can take up nitrate over a wide range of concentrations. The mode of action of NRT1.1 is controlled by phosphorylation of a key residue, Thr 101; however, how this post-translational modification switches the transporter between two affinity states remains unclear. Here we report the crystal structure of unphosphorylated NRT1.1, which reveals an unexpected homodimer in the inward-facing conformation. In this low-affinity state, the Thr 101 phosphorylation site is embedded in a pocket immediately adjacent to the dimer interface, linking the phosphorylation status of the transporter to its oligomeric state. Using a cell-based fluorescence resonance energy transfer assay, we show that functional NRT1.1 dimerizes in the cell membrane and that the phosphomimetic mutation of Thr 101 converts the protein into a monophasic high-affinity transporter by structurally decoupling the dimer. Together with analyses of the substrate transport tunnel, our results establish a phosphorylation-controlled dimerization switch that allows NRT1.1 to uptake nitrate with two distinct affinity modes.


Assuntos
Proteínas de Transporte de Ânions/química , Arabidopsis/química , Proteínas de Plantas/química , Multimerização Proteica , Sequência de Aminoácidos , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/genética , Sítios de Ligação , Transporte Biológico , Membrana Celular/química , Membrana Celular/metabolismo , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Transportadores de Nitrato , Nitratos/química , Nitratos/metabolismo , Fosforilação , Fosfotreonina/química , Fosfotreonina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrutura Quaternária de Proteína , Prótons , Relação Estrutura-Atividade
16.
Circ Res ; 113(7): e50-e61, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23897695

RESUMO

RATIONALE: The antianginal ranolazine blocks the human ether-a-go-go-related gene-based current IKr at therapeutic concentrations and causes QT interval prolongation. Thus, ranolazine is contraindicated for patients with preexisting long-QT and those with repolarization abnormalities. However, with its preferential targeting of late INa (INaL), patients with disease resulting from increased INaL from inherited defects (eg, long-QT syndrome type 3 or disease-induced electric remodeling (eg, ischemic heart failure) might be exactly the ones to benefit most from the presumed antiarrhythmic properties of ranolazine. OBJECTIVE: We developed a computational model to predict if therapeutic effects of pharmacological targeting of INaL by ranolazine prevailed over the off-target block of IKr in the setting of inherited long-QT syndrome type 3 and heart failure. METHODS AND RESULTS: We developed computational models describing the kinetics and the interaction of ranolazine with cardiac Na(+) channels in the setting of normal physiology, long-QT syndrome type 3-linked ΔKPQ mutation, and heart failure. We then simulated clinically relevant concentrations of ranolazine and predicted the combined effects of Na(+) channel and IKr blockade by both the parent compound ranolazine and its active metabolites, which have shown potent blocking effects in the therapeutically relevant range. Our simulations suggest that ranolazine is effective at normalizing arrhythmia triggers in bradycardia-dependent arrhythmias in long-QT syndrome type 3 as well tachyarrhythmogenic triggers arising from heart failure-induced remodeling. CONCLUSIONS: Our model predictions suggest that acute targeting of INaL with ranolazine may be an effective therapeutic strategy in diverse arrhythmia-provoking situations that arise from a common pathway of increased pathological INaL.


Assuntos
Acetanilidas/farmacologia , Antiarrítmicos/farmacologia , Simulação por Computador , Síndrome do QT Longo/tratamento farmacológico , Piperazinas/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Acetanilidas/uso terapêutico , Potenciais de Ação/efeitos dos fármacos , Antiarrítmicos/uso terapêutico , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Cinética , Síndrome do QT Longo/congênito , Mutação , Piperazinas/uso terapêutico , Ranolazina , Bloqueadores dos Canais de Sódio/uso terapêutico , Canais de Sódio/genética
17.
Proc Natl Acad Sci U S A ; 109(20): 7899-904, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22550182

RESUMO

Ion channels operate in intact tissues as part of large macromolecular complexes that can include cytoskeletal proteins, scaffolding proteins, signaling molecules, and a litany of other molecules. The proteins that make up these complexes can influence the trafficking, localization, and biophysical properties of the channel. TRIP8b (tetratricopetide repeat-containing Rab8b-interacting protein) is a recently discovered accessory subunit of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that contributes to the substantial dendritic localization of HCN channels in many types of neurons. TRIP8b interacts with the carboxyl-terminal region of HCN channels and regulates their cell-surface expression level and cyclic nucleotide dependence. Here we examine the molecular determinants of TRIP8b binding to HCN2 channels. Using a single-molecule fluorescence bleaching method, we found that TRIP8b and HCN2 form an obligate 4:4 complex in intact channels. Fluorescence-detection size-exclusion chromatography and fluorescence anisotropy allowed us to confirm that two different domains in the carboxyl-terminal portion of TRIP8b--the tetratricopepide repeat region and the TRIP8b conserved region--interact with two different regions of the HCN carboxyl-terminal region: the carboxyl-terminal three amino acids (SNL) and the cyclic nucleotide-binding domain, respectively. And finally, using X-ray crystallography, we determined the atomic structure of the tetratricopepide region of TRIP8b in complex with a peptide of the carboxy-terminus of HCN2. Together, these experiments begin to uncover the mechanism for TRIP8b binding and regulation of HCN channels.


Assuntos
Canais Iônicos/metabolismo , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Cromatografia em Gel , Cristalografia , Polarização de Fluorescência , Vetores Genéticos/genética , Proteínas de Fluorescência Verde , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais Iônicos/genética , Camundongos , Microscopia de Fluorescência , Proteínas do Tecido Nervoso/genética , Oócitos , Técnicas de Patch-Clamp , Canais de Potássio , Ligação Proteica , Difração de Raios X , Xenopus
18.
Sci Transl Med ; 3(98): 98ra83, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21885405

RESUMO

A long-sought, and thus far elusive, goal has been to develop drugs to manage diseases of excitability. One such disease that affects millions each year is cardiac arrhythmia, which occurs when electrical impulses in the heart become disordered, sometimes causing sudden death. Pharmacological management of cardiac arrhythmia has failed because it is not possible to predict how drugs that target cardiac ion channels, and have intrinsically complex dynamic interactions with ion channels, will alter the emergent electrical behavior generated in the heart. Here, we applied a computational model, which was informed and validated by experimental data, that defined key measurable parameters necessary to simulate the interaction kinetics of the anti-arrhythmic drugs flecainide and lidocaine with cardiac sodium channels. We then used the model to predict the effects of these drugs on normal human ventricular cellular and tissue electrical activity in the setting of a common arrhythmia trigger, spontaneous ventricular ectopy. The model forecasts the clinically relevant concentrations at which flecainide and lidocaine exacerbate, rather than ameliorate, arrhythmia. Experiments in rabbit hearts and simulations in human ventricles based on magnetic resonance images validated the model predictions. This computational framework initiates the first steps toward development of a virtual drug-screening system that models drug-channel interactions and predicts the effects of drugs on emergent electrical activity in the heart.


Assuntos
Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Simulação por Computador , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Modelos Cardiovasculares , Animais , Arritmias Cardíacas/fisiopatologia , Flecainida/farmacologia , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiopatologia , Insuficiência Cardíaca/tratamento farmacológico , Ventrículos do Coração/fisiopatologia , Humanos , Cinética , Lidocaína/farmacologia , Coelhos , Reprodutibilidade dos Testes , Canais de Sódio/metabolismo
19.
J Mol Cell Cardiol ; 48(1): 246-53, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19481549

RESUMO

The congenital long QT syndrome (LQTS) is a heritable arrhythmia in which mutations in genes coding for ion channels or ion channel associated proteins delay ventricular repolarization and place mutation carriers at risk for serious or fatal arrhythmias. Triggers and therapeutic management of LQTS arrhythmias have been shown to differ in a manner that depends strikingly on the gene that is mutated. Additionally, beta-blockers, effective in the management of LQT-1, have been thought to be potentially proarrhythmic in the treatment of LQT-3 because of concomitant slowing of heart rate that accompanies decreased adrenergic activity. Here we report that the beta-blocker propranolol interacts with wild type (WT) and LQT-3 mutant Na(+) channels in a manner that resembles the actions of local anesthetic drugs. We demonstrate that propranolol blocks Na(+) channels in a use-dependent manner; that propranolol efficacy is dependent on the inactivated state of the channel; that propranolol blocks late non-inactivating current more effectively than peak sodium current; and that mutation of the local anesthetic binding site greatly reduces the efficacy of propranolol block of peak and late Na(+) channel current. Furthermore our results indicate that this activity, like that of local anesthetic drugs, differs both with drug structure and the biophysical changes in Na(+) channel function caused by specific LQT-3 mutations.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Anestésicos Locais/farmacologia , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/metabolismo , Canais de Sódio/metabolismo , Antagonistas Adrenérgicos beta/uso terapêutico , Anestésicos Locais/uso terapêutico , Carbazóis/farmacologia , Carbazóis/uso terapêutico , Carvedilol , Linhagem Celular , Eletrofisiologia , Coração/efeitos dos fármacos , Humanos , Metoprolol/farmacologia , Metoprolol/uso terapêutico , Propanolaminas/farmacologia , Propanolaminas/uso terapêutico , Propranolol/farmacologia , Propranolol/uso terapêutico
20.
Proc Natl Acad Sci U S A ; 106(3): 743-8, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19131515

RESUMO

The cardiac-delayed rectifier K(+) current (I(KS)) is carried by a complex of KCNQ1 (Q1) subunits, containing the voltage-sensor domains and the pore, and auxiliary KCNE1 (E1) subunits, required for the characteristic I(KS) voltage dependence and kinetics. To locate the transmembrane helix of E1 (E1-TM) relative to the Q1 TM helices (S1-S6), we mutated, one at a time, the first four residues flanking the extracellular ends of S1-S6 and E1-TM to Cys, coexpressed all combinations of Q1 and E1 Cys-substituted mutants in CHO cells, and determined the extents of spontaneous disulfide-bond formation. Cys-flanking E1-TM readily formed disulfides with Cys-flanking S1 and S6, much less so with the S3-S4 linker, and not at all with S2 or S5. These results imply that the extracellular flank of the E1-TM is located between S1 and S6 on different subunits of Q1. The salient functional effects of selected cross-links were as follows. A disulfide from E1 K41C to S1 I145C strongly slowed deactivation, and one from E1 L42C to S6 V324C eliminated deactivation. Given that E1-TM is between S1 and S6 and that K41C and L42C are likely to point approximately oppositely, these two cross-links are likely to favor similar axial rotations of E1-TM. In the opposite orientation, a disulfide from E1 K41C to S6 V324C slightly slowed activation, and one from E1 L42C to S1 I145C slightly speeded deactivation. Thus, the first E1 orientation strongly favors the open state, while the approximately opposite orientation favors the closed state.


Assuntos
Cisteína/química , Dissulfetos/química , Canal de Potássio KCNQ1/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Ditiotreitol/farmacologia , Humanos , Canal de Potássio KCNQ1/fisiologia , Dados de Sequência Molecular , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...