Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biosyst ; 4(8): e2000046, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32567253

RESUMO

In order to secure biomaterials to tissue surfaces, sutures or glues are commonly used. Of interest is the development of a biomaterial patch for applications in tissue engineering and regeneration that incorporates an adhesive component to simplify patch application and ensure sufficient adhesion. A separate region dedicated to fulfilling the specific requirements of an application such as mechanical support or tissue delivery is also desirable. Here, the design and fabrication of a unique patch are presented with distinct regions for adhesion and function, resulting in a biomaterial patch resembling the Band-Aid. The adhesive region contains a novel polymer, synthesized to incorporate a molecule capable of adhesion to tissue, dopamine. The desired polymer composition for patch development is selected based on chemical assessment and evaluation of key physical properties such as swelling and elastic modulus, which are tailored for use in soft tissue applications. The selected polymer formulation, referred to as the adhesive patch (AP) polymer, demonstrates negligible cytotoxicity and improves adhesive capability to rat cardiac tissue compared to currently used patch materials. Finally, the AP polymer is used in the patch, designed to possess distinct adhesive and nonadhesive domains, presenting a novel design for the next generation of biomaterials.


Assuntos
Adesivos/farmacologia , Materiais Biocompatíveis/farmacologia , Dopamina/química , Fibroblastos/efeitos dos fármacos , Alicerces Teciduais , Adesivos/síntese química , Animais , Materiais Biocompatíveis/síntese química , Sobrevivência Celular/efeitos dos fármacos , Ácido Cítrico/química , Módulo de Elasticidade , Feminino , Fibroblastos/citologia , Fibroblastos/fisiologia , Anidridos Maleicos/química , Miocárdio/citologia , Polietilenoglicóis/química , Polimerização , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual/métodos , Molhabilidade
2.
Adv Healthc Mater ; 8(16): e1900245, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31313890

RESUMO

Synthetic polyester elastomeric constructs have become increasingly important for a range of healthcare applications, due to tunable soft elastic properties that mimic those of human tissues. A number of these constructs require intricate mechanical design to achieve a tunable material with controllable curing. Here, the synthesis and characterization of poly(itaconate-co-citrate-co-octanediol) (PICO) is presented, which exhibits tunable formation of elastomeric networks through radical crosslinking of itaconate in the polymer backbone of viscous polyester gels. Through variation of reaction times and monomer molar composition, materials with modulation of a wide range of elasticity (36-1476 kPa) are generated, indicating the tunability of materials to specific elastomeric constructs. This correlated with measured rapid and controllable gelation times. As a proof of principle, scaffold support for cardiac tissue patches is developed, which presents visible tissue organization and viability with appropriate elastomeric support from PICO materials. These formulations present potential application in a range of healthcare applications with requirement for elastomeric support with controllable, rapid gelation under mild conditions.


Assuntos
Materiais Biocompatíveis/química , Elastômeros/química , Teste de Materiais , Polímeros/química , Succinatos/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
3.
Acta Biomater ; 58: 376-385, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28499634

RESUMO

Polymeric materials that contain magnetic nanoparticles are extremely useful in many applications including as multifunctional drug carriers, imaging contrast agents, or scaffold material. There is a need for biomaterials with appropriate chemical, mechanical, and magnetic properties that also have the ability to degrade or dissolve over time so they can be eliminated from the body following use. In this work, we explore the use of iron oxide nanoparticle (IONP) formation in poly(vinyl alcohol) (PVA) as a crosslinking method in conjunction with physical crosslinking achieved using low temperature thermal cycling (LTTC). PVA-IONP hydrogels were fabricated and characterized. IONPs contribute to the crosslinking of the PVA-IONP material, and their subsequent removal reduces crosslinking, and therefore stability, of the material, allowing dissolution to occur. Dissolution studies were performed on PVA-IONP hydrogels and dissolution was compared for films in solutions of varying pH, in the presence of iron chelating agents, and in simulated physiological and tumor conditions in cell culture media. Iron release, mass loss, and mechanical testing data was collected. This work demonstrates the ability of this biomaterial to 'degrade' over time, which may be very advantageous for applications such as drug delivery. This importance of this work extends to other areas such as the use of stimuli-responsive hydrogels. STATEMENT OF SIGNIFICANCE: This manuscript explores the stability of an iron oxide nanoparticle (IONP)-containing, physically crosslinked poly(vinyl alcohol) (PVA) hydrogel. The PVA-IONP hydrogel's stability is imparted through crosslinks created through a low temperature thermal cycling process and through the IONPs. Subsequent IONP removal reduces crosslinks so material dissolution can occur, resulting in a 'degradable' and multifunctional biomaterial. PVA-IONP films were fabricated, characterized and evaluated in terms of dissolution in solutions of varying pH and in the presence of chelating agents. Iron release, mass loss, and mechanical testing data demonstrate the ability of the PVA-IONP biomaterial to 'degrade' over time. This degradability has not yet been demonstrated for crosslinked PVA hydrogels. These results are relevant to the development of degradable multifunctional drug carriers, image contrast agents, or magnetic scaffold materials.


Assuntos
Hidrogéis/química , Nanopartículas de Magnetita/química , Álcool de Polivinil/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...