Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34187891

RESUMO

Heterozygous genetic variants within the TREM2 gene show a strong association with increased Alzheimer's disease (AD) risk. Amyloid beta-depositing mouse models haploinsufficient or null for Trem2 have identified important relationships among TREM2, microglia, and AD pathology; however, results are challenging to interpret in the context of varying microglial phenotypes and disease progression. We hypothesized that acute Trem2 reduction may alter amyloid pathology and microglial responses independent of genetic Trem2 deletion in mouse models. We developed antisense oligonucleotides (ASOs) that potently but transiently lower Trem2 messenger RNA throughout the brain and administered them to APP/PS1 mice at varying stages of plaque pathology. Late-stage ASO-mediated Trem2 knockdown significantly reduced plaque deposition and attenuated microglial association around plaque deposits when evaluated 1 mo after ASO injection. Changes in microglial gene signatures 1 wk after ASO administration and phagocytosis measured in ASO-treated cells together indicate that microglia may be activated with short-term Trem2 reduction. These results suggest a time- and/or dose-dependent role for TREM2 in mediating plaque deposition and microglial responses in which loss of TREM2 function may be beneficial for microglial activation and plaque removal in an acute context.


Assuntos
Amiloide/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglia/patologia , Fagocitose , Receptores Imunológicos/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Fagocitose/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Placa Amiloide/patologia , Presenilina-1/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteínas tau/metabolismo
2.
Sci Adv ; 7(12)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33741591

RESUMO

Neuronal tau reduction confers resilience against ß-amyloid and tau-related neurotoxicity in vitro and in vivo. Here, we introduce a novel translational approach to lower expression of the tau gene MAPT at the transcriptional level using gene-silencing zinc finger protein transcription factors (ZFP-TFs). Following a single administration of adeno-associated virus (AAV), either locally into the hippocampus or intravenously to enable whole-brain transduction, we selectively reduced tau messenger RNA and protein by 50 to 80% out to 11 months, the longest time point studied. Sustained tau lowering was achieved without detectable off-target effects, overt histopathological changes, or molecular alterations. Tau reduction with AAV ZFP-TFs was able to rescue neuronal damage around amyloid plaques in a mouse model of Alzheimer's disease (APP/PS1 line). The highly specific, durable, and controlled knockdown of endogenous tau makes AAV-delivered ZFP-TFs a promising approach for the treatment of tau-related human brain diseases.


Assuntos
Doença de Alzheimer , Fatores de Transcrição , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Camundongos , Placa Amiloide/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética , Proteínas tau/genética , Proteínas tau/metabolismo
3.
Brain ; 141(7): 2194-2212, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29733334

RESUMO

Several studies have now supported the use of a tau lowering agent as a possible therapy in the treatment of tauopathy disorders, including Alzheimer's disease. In human Alzheimer's disease, however, concurrent amyloid-ß deposition appears to synergize and accelerate tau pathological changes. Thus far, tau reduction strategies that have been tested in vivo have been examined in the setting of tau pathology without confounding amyloid-ß deposition. To determine whether reducing total human tau expression in a transgenic model where there is concurrent amyloid-ß plaque formation can still reduce tau pathology and protect against neuronal loss, we have taken advantage of the regulatable tau transgene in APP/PS1 × rTg4510 mice. These mice develop both neurofibrillary tangles as well as amyloid-ß plaques throughout the cortex and hippocampus. By suppressing human tau expression for 6 months in the APP/PS1 × rTg4510 mice using doxycycline, AT8 tau pathology, bioactivity, and astrogliosis were reduced, though importantly to a lesser extent than lowering tau in the rTg4510 alone mice. Based on non-denaturing gels and proteinase K digestions, the remaining tau aggregates in the presence of amyloid-ß exhibit a longer-lived aggregate conformation. Nonetheless, lowering the expression of the human tau transgene was sufficient to equally ameliorate thioflavin-S positive tangles and prevent neuronal loss equally well in both the APP/PS1 × rTg4510 mice and the rTg4510 cohort. Together, these results suggest that, although amyloid-ß stabilizes tau aggregates, lowering total tau levels is still an effective strategy for the treatment of tau pathology and neuronal loss even in the presence of amyloid-ß deposition.


Assuntos
Placa Amiloide/patologia , Tauopatias/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Emaranhados Neurofibrilares/patologia , Neurônios/metabolismo , Fosforilação , Placa Amiloide/metabolismo , Presenilina-1/metabolismo
4.
Front Neurosci ; 12: 267, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740275

RESUMO

Alzheimer's disease (AD) is defined by the presence of intraneuronal neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau aggregates as well as extracellular amyloid-beta plaques. The presence and spread of tau pathology through the brain is classified by Braak stages and thought to correlate with the progression of AD. Several in vitro and in vivo studies have examined the ability of tau pathology to move from one neuron to the next, suggesting a "prion-like" spread of tau aggregates may be an underlying cause of Braak tau staging in AD. Using the HEK293 TauRD-P301S-CFP/YFP expressing biosensor cells as a highly sensitive and specific tool to identify the presence of seed competent aggregated tau in brain lysate-i.e., tau aggregates that are capable of recruiting and misfolding monomeric tau-, we detected substantial tau seeding levels in the entorhinal cortex from human cases with only very rare NFTs, suggesting that soluble tau aggregates can exist prior to the development of overt tau pathology. We next looked at tau seeding levels in human brains of varying Braak stages along six regions of the Braak Tau Pathway. Tau seeding levels were detected not only in the brain regions impacted by pathology, but also in the subsequent non-pathology containing region along the Braak pathway. These data imply that pathogenic tau aggregates precede overt tau pathology in a manner that is consistent with transneuronal spread of tau aggregates. We then detected tau seeding in frontal white matter tracts and the optic nerve, two brain regions comprised of axons that contain little to no neuronal cell bodies, implying that tau aggregates can indeed traverse along axons. Finally, we isolated cytosolic and synaptosome fractions along the Braak Tau Pathway from brains of varying Braak stages. Phosphorylated and seed competent tau was significantly enriched in the synaptic fraction of brain regions that did not have extensive cellular tau pathology, further suggesting that aggregated tau seeds move through the human brain along synaptically connected neurons. Together, these data provide further evidence that the spread of tau aggregates through the human brain along synaptically connected networks results in the pathogenesis of human Alzheimer's disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...