Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Indian J Pharmacol ; 56(2): 120-128, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38687316

RESUMO

OBJECTIVE: The objective of this study was to evaluate the efficacy and safety of topical nanoemulsion (NE)-loaded cream and gel formulations of Hippophae rhamnoides L. (sea buckthorn [SBT]) fruit oil for wound healing. MATERIALS AND METHODS: The NE-loaded cream and gel formulations of H. rhamnoides L. (SBT) fruit oil (IPHRFH) were prepared and evaluated for their wound-healing activity on female Sprague-Dawley (SD) rats. They were further divided into groups (seven) and the wound-healing activity was determined by measuring the area of the wound on the wounding day and on the 0th, 4th, 8th, and 10th days. The acute dermal toxicity of the formulations was assessed by observing the erythema, edema, and body weight (BW) of the rats. RESULTS: The topical NE cream and gel formulations of H. rhamnoides L. (SBT) fruit oil showed significant wound-healing activity in female SD rats. The cream formulation of IPHRFH showed 78.96%, the gel showed 72.59% wound contraction on the 8th day, whereas the positive control soframycin (1% w/w framycetin) had 62.29% wound contraction on the 8th day. The formulations also showed a good acute dermal toxicity profile with no changes significantly affecting BW and dermal alterations. CONCLUSIONS: The results of this study indicate that topical NE-loaded cream and gel formulation of H. rhamnoides L. (SBT) fruit oil are safe and effective for wound healing. The formulations showed no signs of acute dermal toxicity in female SD rats.


Assuntos
Emulsões , Géis , Hippophae , Óleos de Plantas , Ratos Sprague-Dawley , Cicatrização , Animais , Feminino , Hippophae/química , Hippophae/toxicidade , Cicatrização/efeitos dos fármacos , Ratos , Óleos de Plantas/toxicidade , Óleos de Plantas/administração & dosagem , Frutas , Pele/efeitos dos fármacos , Administração Cutânea , Administração Tópica , Nanopartículas/toxicidade
2.
J Pharm Sci ; 113(7): 1844-1853, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38336008

RESUMO

The solid-state properties of active pharmaceutical ingredient (API) have significant impact on its dissolution performance. In the present study, two different crystal habits viz. rod and plate shape of form I of FEN were evaluated for dissolution profile using USP Type 2 and Type 4 apparatuses. Molecular basis of differential dissolution performance of different crystal habits was investigated. Rod (FEN-R) and plate (FEN-P) shaped crystal habits of Form I of FEN were generated using anti-solvent crystallization method. Despite the same polymorphic form and similar particle size distribution, FEN-P demonstrated higher dissolution performance than FEN-R. Crystal face indexation and electrostatic potential (ESP) map provided information on differential relative abundance of various facets and their molecular environment. In FEN-R, the dominant facet (001) is hydrophobic due to the exposure of chlorophenyl moiety. Whereas, in FEN-P the dominant facet (01-1) was hydrophilic due to the presence of chlorine and ester carbonyl groups. Deeper insight on the impact of different facets on dissolution behavior was obtained by energy framework analysis by unveiling strength of intermolecular interactions along various crystallographic facets. Moreover, type 4 apparatus provided higher discriminatory ability over USP Type 2 apparatus, in probing the crystal habit induced differential dissolution performance of FEN. The findings of this study emphasize that crystal habit should be considered as an important critical material attribute (CMA) during formulation development of FEN and due considerations should be given to the selection of the appropriate dissolution testing set-up for establishing in vitro-in vivo correlation.


Assuntos
Cristalização , Fenofibrato , Solubilidade , Fenofibrato/química , Tamanho da Partícula , Anisotropia , Propriedades de Superfície , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Química Farmacêutica/métodos , Eletricidade Estática
3.
Mol Pharm ; 21(1): 76-86, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051598

RESUMO

Drugs have been classified as fast, moderate, and poor crystallizers based on their inherent solid-state crystallization tendency. Differential scanning calorimetry-based heat-cool-heat protocol serves as a valuable tool to define the solid-state crystallization tendency. This classification helps in the development of strategies for stabilizing amorphous drugs. However, microscopic characteristics of the samples were generally overlooked during these experiments. In the present study, we evaluated the influence of microscopic cracks on the crystallization tendency of a poorly water-soluble model drug, celecoxib. Cracks developed in the temperature range of 0-10 °C during the cooling cycle triggered the subsequent crystallization of the amorphous phase. Nanoindentation study suggested minimal differences in mechanical properties between samples, although the cracked sample showed relatively inhomogeneous mechanical properties. Nuclei nourishment experiments suggested crack-assisted nucleation, which was supported by Raman data that revealed subtle changes in intermolecular interactions between cracked and uncracked samples. Celecoxib has been generally classified as class II, i.e., a drug with moderate crystallization tendency. Interestingly, classification of amorphous celecoxib may change depending on the presence or absence of cracks in the amorphous sample. Hence, subtle events such as microscopic cracks should be given due consideration while defining the solid-state crystallization tendency of drugs.


Assuntos
Água , Cristalização , Celecoxib/química , Estabilidade de Medicamentos , Transição de Fase , Varredura Diferencial de Calorimetria , Solubilidade
4.
Chin Herb Med ; 15(4): 607-613, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38094022

RESUMO

Objective: To develop a qNMR method for quantitative analysis of triacylglycerols in fruit oil of Hippophae rhamnoides (seabuckthorn, SBT) and analyze commercial samples of SBT oils using GC-MS and FTIR. Methods: SBT fruit oil (IPHRFH) was extracted with hexane and the triglyceride (TAG) was isolated by vacuum liquid chromatography. Six different branded SBT oils purchased from e-commerce suppliers (Amazon) and in-house prepared SBT oil was analyzed by qNMR and fatty acyl composition of TAGs determined by using NMR. In-house oil was also analysed by GC-MS and FTIR spectroscopy. Results: The qNMR results showed that the oil contained 80.3% of triacylglycerol (TAG). The SBT oil TAGs comprised of linolenate 6.6%, palmitoleate/oleate 65.4%, and total saturated fatty acyl chain including palmitate 28% as determined by qNMR. GC-MS analysis revealed that the major acyl functionalities present in the TAG were palmitoleic acid 36.5%, oleic acid 12.9%, palmitic acid 21.2%, and linoleic acid 18%. Of the six commercial samples analyzed, samples from only one supplier (SW) were fruit oil; All others were the seed oils or mix of fruit oil and seed oil. The labels for samples except for the SW did not indicate whether it was fruit oil or seed oil. Conclusion: The results suggest that SBT oil should be analyzed by combination of GC-MS, FTIR and qNMR for factual content of free fatty acid or TAGs, which are chemically different in nature and affect the quality of oil. GC-MS showed the content of omega free fatty acids after hydrolysis, while qNMR and FTIR showed the content of TAGs. The major acyl functionalities found in SBT fruit oil TAGs are palmitoleate/palmitate/oleate, while linoleate and linonelate make up a minor fraction. Furthermore, analysis of commercial samples showed discrepancies between label claims and actual content.

5.
Mol Pharm ; 20(10): 5226-5239, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37677085

RESUMO

Multidrug salts represent more than one drug in a crystal lattice and thus could be used to deliver multiple drugs in a single dose. It showcases unique physicochemical properties in comparison to individual components, which could lead to improved efficacy and therapeutic synergism. This study presents the preparation and scale-up of sulfamethoxazole-piperazine salt, which has been thoroughly characterized by X-ray diffraction and thermal and spectroscopic analyses. A detailed mechanistic study investigates the impact of piperazine on the microenvironmental pH of the salt and its effect on the speciation profile, solubility, dissolution, and diffusion profile. Also, the improvement in the physicochemical properties of sulfamethoxazole due to the formation of salt was explored with lattice energy contributions. A greater ionization of sulfamethoxazole (due to pH changes contributed by piperazine) and lesser lattice energy of sulfamethoxazole-piperazine contributed to improved solubility, dissolution, and permeability. Moreover, the prepared salt addresses the stability issues of piperazine and exhibits good stability behavior under accelerated stability conditions. Due to the improvement of physicochemical properties, the sulfamethoxazole-piperazine salt demonstrates better pharmacokinetic parameters in comparison to sulfamethoxazole and provides a strong suggestion for the reduction of dose. The following study suggests that multidrug salts can concurrently enhance the physicochemical properties of drugs and present themselves as improved fixed-dose combinations.


Assuntos
Sais , Piperazina , Sais/química , Difração de Raios X , Solubilidade
6.
Pharmaceutics ; 15(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37765319

RESUMO

Different deep eutectic systems (DES) of choline chloride (CC)-urea (UA) (1:2), CC-glycerol (GLY) (1:2), CC-malonic acid (MA) (1:1), and CC-ascorbic acid (AA) (2:1) were generated and characterized by polarized light microscope (PLM) and Fourier transform infrared spectroscope (FTIR). The equilibrium solubility of celecoxib (CLX) in DES was compared to that in deionized water. The CC-MA (1:1) system provided ~10,000 times improvement in the solubility of CLX (13,114.75 µg/g) and was used for the generation of the CLX-DES system. The latter was characterized by PLM and FTIR to study the microstructure and intermolecular interaction between the CLX and CC-MA (1:1) DES. FTIR demonstrated the retention of the chemical structure of CLX. In vitro drug release studies in FaSSIF initially demonstrated high supersaturation, which decreased by ~2 fold after 2 h. Density functional theory (DFT)-based calculations provided a molecular-level understanding of enhanced solubility. Gibbs free energy calculations established the role of the strongest binding of CLX with CC and MA. A phase solubility study highlighted the role of hydrotropy-induced solubilization of the CLX-DES system. Animal pharmacokinetic studies established 2.76 times improvement in Cmax, 1.52 times reduction in tmax, and 1.81 times improvement in AUC0-∞. The overall results demonstrated the potential of developing a DES-based supersaturating drug-delivery system for pharmaceutical loading of drugs having solubility and dissolution rate-limited oral bioavailability.

7.
Pharm Res ; 39(12): 3241-3257, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36002616

RESUMO

Pharmaceutical tablet manufacturing has seen a paradigm shift toward continuous manufacturing and twin-screw granulation-based technologies have catalyzed this shift. Twin-screw granulator can simultaneously perform unit operations like mixing, granulation, and drying of the granules. The present study investigates the impact of polymer concentration and processing parameters of twin-screw melt granulation, on flow properties and compaction characteristics of a model drug having high dose and poor tabletability. Acetaminophen (AAP) and polyvinylpyrrolidone vinyl acetate (PVPVA) were used as a model drug (90-95% w/w) and polymeric binder (5-10%w/w), respectively, for the current study. Feed rate (~650-1150 g/h), extruder screw speed (150-300 rpm), and temperature (60-150°C) were used as processing variables. Results showed the reduction in particle size of drug in the extrudates (D90 of 15-25 µm from ~80 µm), irrespective of processing condition, while flow properties were a function of polymer concentration. Overall, good flowability of the products and their tablets with optimum tensile strength can be obtained through using high polymer concentration (i.e., 10% w/w), lower feed rate (~650 g/h), lower extruder screw speed (150 rpm), and higher processing temperatures (up to 120°C). The findings from the current study can be useful for continuous manufacturing of tablets of high dose drugs with minimal excipient loading in the final dosage form.


Assuntos
Acetaminofen , Polímeros , Composição de Medicamentos/métodos , Excipientes , Comprimidos , Tamanho da Partícula , Tecnologia Farmacêutica/métodos
8.
J Pharm Sci ; 111(9): 2592-2605, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35700797

RESUMO

A one-step spray drying based process was employed to generate ready-to-use nanocrystalline solid dispersion (NCSD) dry powder for inhalation (DPI) of voriconazole (VRC). The solid dispersion was prepared by spray drying VRC, MAN (mannitol) and soya lecithin (LEC) from mixture of methanol-water. Various formulation and process related parameters were screened, including LEC, inlet temperature, total solid content and feed flow rate to generate particles of geometric size ≤5 µm. Aerosil® 200 was explored as the quaternary excipient either during spray drying or by physically mixing with the optimized ternary NCSD. The powders were extensively characterized for solid form, primary particle size, assay, embedded nanocrystal size, morphology, porosity, density and moisture content. Aerodynamic properties were studied using next generation impactor (NGI), while surface elemental composition and topography were investigated using SEM-EDS (scanning electron microscopy- energy dispersive spectroscopy) and AFM (atomic force microscopy), respectively. At selected inlet temperature of 120 ˚C, total solid content and feed flow rate significantly impacted the size of primary NCSD particles. Size of primary particles increased with increase in total solid content and feed flow rate of the solution. VRC nanocrystals were obtained in polymorphic Form B whereas the matrix of MAN consisted of mixture of polymorphic Forms α, ß and δ. SEM-EDS analysis confirmed deposition of Aerosil® 200 on surface of spray dried particles. In addition to increased porosity and reduced density, increase in surface roughness of particles (evident from AFM topographic analysis) contributed to enhanced powder deposition at stages 3 and 4 in NGI. In comparison, physical blending of NCSD with Aerosil® 200 showed improvement in aerosolization due to flow enhancement property.


Assuntos
Inaladores de Pó Seco , Dióxido de Silício , Administração por Inalação , Aerossóis/química , Inaladores de Pó Seco/métodos , Humanos , Tamanho da Partícula , Pós/química , Voriconazol
9.
Int J Pharm ; 622: 121827, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35589006

RESUMO

In the current work, we aimed to deliver high dose of voriconazole (VRC) to lung through dry powder for inhalation (DPIs). Furthermore, the research tested the hypothesis that drug nanocrystals can escape the clearance mechanisms in lung by virtue of their size and rapid dissolution. High dose nanocrystalline solid dispersion (NCSD) based DPI of VRC was prepared using a novel spray drying process. Mannitol (MAN) and soya lecithin (LEC) were used as crystallization inducer and stabilizer, respectively. The powders were characterized for physicochemical and aerodynamic properties. Chemical interactions contributing to generation and stabilization of VRC nanocrystals in the matrix of MAN were established using computational studies. Performance of NCSD (VRC-N) was compared with microcrystalline solid dispersion (VRC-M) in terms of dissolution, uptake in A549 and RAW 264.7 cells. Plasma and lung distribution of VRC-N and VRC-M in Balb/c mice upon insufflation was compared with the intravenous product. In VRC-N, drug nanocrystals of size 645.86 ± 56.90 nm were successfully produced at VRC loading of 45%. MAN created physical barrier to crystal growth by interacting with N- of triazole and F- of pyrimidine ring of VRC. An increase in drug loading to 60% produced VRC crystals of size 4800 ± 200 nm (VRC-M). The optimized powders were crystalline and showed deposition at stage 2 and 3 in NGI. In comparison to VRC-M, more than 80% of VRC-N dissolved rapidly in around 5-10 mins, therefore, showed higher and lower drug uptake into A549 and RAW 264.7 cells, respectively. In contrast to intravenous product, insufflation of VRC-N and VRC-M led to higher drug concentrations in lung in comparison to plasma. VRC-N showed higher lung AUC0-24 due to escape of macrophage clearance.


Assuntos
Inaladores de Pó Seco , Manitol , Administração por Inalação , Aerossóis/química , Animais , Humanos , Manitol/química , Camundongos , Tamanho da Partícula , Pós , Voriconazol
10.
Front Chem ; 10: 754269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615307

RESUMO

L-Ascorbic acid (ASC), commonly known as vitamin C, acts as an anti-oxidant in the biological system. It is extensively used as an excipient in pharmaceutical industry, food supplements in fruit juices, and food materials due to its free radicals scavenging activity. Main drawback of ASC is its poor aqueous stability owing to the presence of lactone moiety that is easily oxidized to dehydroascorbic acid and further degraded. To improve aqueous stability and inhibit oxidative degradation, ASC was co-crystallized to constitute binary eutectic compositions with mono and di-saccharides such as glucose, sucrose, lactose, and mannitol. The eutectics were confirmed by their (single) lower melting endotherm compared to ASC and sugars, although Powder X-ray diffraction (PXRD) and Fourier transform Infrared spectroscopy (FT-IR) data confirmed the characteristics of their physical mixture. Scanning electron microscope (SEM) images of the binary eutectics confirmed their irregular morphology. The ASC eutectics exhibited improved shelf-life by 2-5-fold in weakly acidic (pH 5) and neutral (pH 7) aqueous buffer medium, whereas the eutectic with glucose enhanced shelf-life only by 1.1-1.2-fold in acidic medium (pH 3.3 and 4). Notably, stabilizing effect of the sugar eutectics decreased with increasing acidity of the medium. In addition, higher binding energy of the disaccharide eutectics partially supports the aqueous stability order of ASC in the neutral pH medium due to more number of non-bonded interactions than that of monosaccharides.

11.
Int J Pharm ; 622: 121873, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35640806

RESUMO

Apremilast is 'difficult-to-deliver' in stratum corneum and viable layers (viable epidermis, dermis) owing to its modest lipophilicity and poor aqueous solubility, respectively. The objective of the present research was to develop apremilast nanocrystal-based gel for enhanced anti-psoriatic efficacy for the treatment of psoriasis. Nanosuspension was generated by wet media milling with a mean particle size of 200 nm. In-vivoefficacy of nanocrystal-based gels was evaluated in the imiquimod-induced psoriatic plaque model. Nanocrystal-based gel (1% and 3% w/w) improved phenotypic, histopathological features of psoriatic skin and attenuated splenic hypertrophy, psoriasis area severity scoring. Enzyme-linked immunosorbent assay was performed to evaluate levels of psoriatic biochemical markers indicating a significant decrease in the concentration of cytokines such as IL-23, IL-17A, IL-6 and TNF-α by nanocrystal-based gels (1% and 3% w/w) over disease induced group. Skin irritation study revealed that nanocrystal-based gel was significantly less irritating than the positive control. These results suggest that nanocrystal-based gel of apremilast can be an effective strategy for the management of psoriasis.


Assuntos
Nanopartículas , Psoríase , Animais , Modelos Animais de Doenças , Géis/farmacologia , Imiquimode/farmacologia , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/patologia , Pele , Talidomida/análogos & derivados
12.
Mol Pharm ; 19(5): 1557-1572, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35290064

RESUMO

Pirfenidone (PFD) is the first pharmacological agent approved by the US Food and Drug Administration (FDA) in 2014 for the treatment of idiopathic pulmonary fibrosis (IPF). The recommended daily dosage of PFD in patients with IPF is very high (2403 mg/day) and must be mitigated through additives. In the present work, sustained-release (SR) formulations of the PFD-FA cocrystal of two different strengths such as 200 and 600 mg were prepared and its comparative bioavailability in healthy human volunteers was studied against the reference formulation PIRFENEX (200 mg). A single-dose pharmacokinetic study (200 mg IR vs 200 mg SR) demonstrated that the test formulation exhibited lower Cmax and Tmax in comparison to the reference formulation, which showed that the cocrystal behaved like an SR formulation. Further in the multiple-dose comparative bioavailability study (200 mg IR thrice daily vs 600 mg SR once daily), the test formulation was found bioequivalent to the reference formulation. In conclusion, the present study suggests that cocrystallization offers a promising strategy to reduce the solubility of PFD and opens the door for potential new dosage forms of this important pharmaceutical.


Assuntos
Disponibilidade Biológica , Administração Oral , Área Sob a Curva , Estudos Cross-Over , Preparações de Ação Retardada , Fumaratos , Voluntários Saudáveis , Humanos , Piridonas , Solubilidade , Comprimidos , Equivalência Terapêutica
13.
Mol Pharm ; 19(3): 985-997, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35188397

RESUMO

The study investigated the milling behavior of voriconazole (VRZ) subjected to particle size reduction using air jet mill at differential air pressures of 5, 6, 7, and 8 bar for five cycles at each pressure. The crystal structure of VRZ was probed for understanding the fracture behavior from crystal packing and intermolecular interactions using molecular modeling tools of attachment energy (Eatt), density functional theory, and energy framework analysis. Upon milling for different cycles, VRZ showed that size reduction from (D90) 20 to 9 µm and 100% particles could not be milled to sizes below 9 µm, with the increase in either the milling intensity or cycle. The milled samples retained the original crystal lattice as evident from consistent melting endotherm (Tm = 130.75 °C); heat of fusion (ΔHf = 96.52 J/g) values; and the plate-shaped morphology. The powder X-ray diffraction pattern of milled samples consistently showed characteristic peaks of stable form B of VRZ. The crystallographic plane (001) was found to be the most prominent slip and the cleavage plane due to least Eatt and weak noncovalent interactions (6.996 kJ/mol) between 3'H and 4'F functional groups of the neighboring planes. The predicted indentation hardness value of 228.67 MPa further indicated toward the plastic nature of VRZ crystals. Corroborating outcomes from the different molecular modeling tools for VRZ, cleavage along the plane (001) was determined to be energetically favorable, whereas cleavage of isotropic 2D molecular sheets was energetically unfavorable. As milling proceeds and crystal reduces in size, contact surface area and overall interaction energy decrease contributing to plastic behavior of the crystal. It was concluded that crystal plasticity and isotropic 2D molecular sheets along with the orientation of particles to the direction of stress and attrition energy during air jet milling are contributing factors for nonuniform size reduction of VRZ particles.


Assuntos
Plásticos , Tamanho da Partícula , Pós , Voriconazol , Difração de Raios X
14.
AAPS PharmSciTech ; 23(1): 43, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34964923

RESUMO

Co-crystallization studies were undertaken to improve the solubility of a highly water-insoluble drug febuxostat (FXT), used in the treatment of gout and hyperuricemia. The selection of co-crystal former (CCF) molecules such as 1-hydroxy 2-naphthoic acid (1H-2NPH), 4-hydroxy benzoic acid (4-HBA), salicylic acid (SAC), 5-nitro isophthalic acid (5-NPH), isonicotinamide (ISNCT), and picolinamide (PICO) was based on the presence of complementary functional groups capable of forming hydrogen bond and the ΔpKa difference between FXT and CCF. A liquid-assisted grinding (LAG) method was successfully employed for the rapid screening of various pharmaceutical adducts. These adducts were characterized based on their unique thermal (differential scanning calorimetry) and spectroscopic (Fourier transform infrared and Raman spectroscopy) profiles. Binary phase diagrams (BPD) were plotted to establish a relationship between the thermal events and adduct formed. Powder X-ray diffraction (PXRD) studies were carried out to confirm the formation of eutectic/co-crystal. Thermogravimetric analysis (TGA) was also performed for the novel co-crystals obtained. The propensity for strong homo-synthons over weak hetero-synthons and strong hetero-synthons over weak homo-synthons during supramolecular growth resulted in the formation of eutectics and co-crystals respectively. FXT:1H-2NPH (1), FXT:4-HBA (1), FXT:SAC (1, 2), and FXT:5-NPH (2-1) gave rise to pure eutectic systems, while FXT:ISNCT (2-1) and FXT:PICO (1) gave rise to novel co-crystals with characteristic DSC heating curves and PXRD pattern. Additionally, the impact of microenvironmental pH and microspeciation profile on the improved dissolution profile of the co-crystals was discussed. Graphical Abstract.


Assuntos
Febuxostat , Varredura Diferencial de Calorimetria , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
15.
Int J Pharm ; 610: 121203, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34673164

RESUMO

The deep eutectic system (DES) is a relatively new concept in the field of drug delivery science. DES is a class of eutectic mixtures comprised of two or more components, with a eutectic point far below than the melting temperature of the pure components. The strong hydrogen bonding interactions between DES constituents are responsible for significant lowering of melting point in DES. A significant number of molecules cannot reach from drug discovery phase to drug development phase because of poor biopharmaceutical attributes, such as solubility and permeability. DES can be a novel alternative to overcome these issues. In last few years DESs have been widely used in different pharmaceutical and chemical processes. However, comprehensive information regarding their drug delivery potential is not available. This review deals with fundamental aspects such as types, preparation, thermodynamics, toxicity, biodegradability and their applications in the field of drug delivery. Current challenges, future prospects and translational aspects of DES as drug delivery system have also been discussed.


Assuntos
Preparações Farmacêuticas , Ligação de Hidrogênio , Solubilidade , Solventes , Termodinâmica
16.
Int J Pharm ; 607: 120958, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34332060

RESUMO

Supersaturating drug delivery systems (SDDS) enhance the oral absorption of poorly water-soluble drugs by achieving a supersaturated state in the gastrointestinal tract. The maintenance of a supersaturated state is decided by the complex interplay among inherent properties of drug, excipients and physiological conditions of gastrointestinal tract. The biopharmaceutical advantage through SDDS can be mechanistically investigated by coupling biopredictive dissolution testing with physiologically based absorption modeling (PBAM). However, the development of biopredictive dissolution methods possess challenges due to concurrent dissolution, supersaturation, precipitation, and possible redissolution of precipitates during gastrointestinal transit of SDDS. In this comprehensive review, our effort is to critically assess the current state-of-knowledge and provide future directions for PBAM of SDDS. The review outlines various methods used to retrieve physiologically relevant values for input parameters like solubility, dissolution, precipitation, lipid-digestion and permeability of SDDS. SDDS-specific parameterization includes solubility values corresponding to apparent physical form, dissolution in physiologically relevant volumes with biorelevant media, and transfer experiments to incorporate precipitation kinetics. Interestingly, the lack of experimental permeability values and modification of absorption flux through SDDS possess the additional challenge for its PBAM. Supersaturation triggered permeability modifications are reported to fit the observed plasma concentration-time profile. Hence, the experimental insights on good fitting with modified permeability can be potential area of future research for the development of in vitro methods to reliably predict oral absorption of SDDS.


Assuntos
Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas , Administração Oral , Excipientes , Permeabilidade , Solubilidade
17.
Drug Discov Today ; 26(10): 2329-2349, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34265460

RESUMO

The barrier function of skin and the non-optimal physicochemical properties of drugs present challenges to the skin penetration of many drugs, thus motivating the development of novel drug delivery systems. Recently, nanocrystal-based formulations have been investigated for topical drug delivery and have demonstrated improved skin penetration. This review highlights barriers in skin penetration, current techniques to improve topical delivery and application of nanocrystals in conquering obstacles for topical delivery. Nanocrystals can improve delivery through the skin by mechanisms including the creation of a higher concentration gradient across skin resulting in increased passive diffusion, hair follicle targeting, formation of diffusional corona, and adhesion to skin. The recent research would be of interest for formulation scientists seeking to develop products involving molecules that are 'difficult-to-deliver' topically.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Preparações Farmacêuticas/administração & dosagem , Administração Cutânea , Animais , Humanos , Preparações Farmacêuticas/metabolismo , Pele/metabolismo , Absorção Cutânea
18.
AAPS PharmSciTech ; 22(5): 201, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34231193

RESUMO

Particle engineering of excipients, at sub-particulate level using co-processing, can provide high functionality excipients. NanoCrySP technology has been recently explored as a novel approach for the generation of nanocrystalline solid dispersion of poorly soluble drugs, using spray drying process. The purpose of the present study was to generate co-processed mannitol and sorbitol (SD-CSM) using NanoCrySP technology having similar composition to commercial co-processed excipient (Compressol® SM, CP). The characterization of excipients was performed to evaluate their various physicomechanical properties. The sub-micron crystallite size of sorbitol in the matrix of mannitol was determined using the Williamson-Hall equation and Halder-Wagner equation. The reduction in crystallite size of sorbitol and mannitol, lower melting point, and lower heat of fusion of SD-CSM could be responsible for excellent compactibility, better tabletability, and comparable compressibility with respect to CP. This was confirmed by the compressibility-tabletability-compactibility (CTC) profile and Heckel plot analysis. Overall, SD-CSM generated using NanoCrySP technology improved functionalities of excipients over CP and would be useful for direct compression application.


Assuntos
Composição de Medicamentos/métodos , Manitol/química , Nanotecnologia , Sorbitol/química , Força Compressiva , Cristalização , Excipientes/química , Tamanho da Partícula , Porosidade , Comprimidos/química , Resistência à Tração , Molhabilidade
19.
Mol Pharm ; 18(8): 2835-2866, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34041914

RESUMO

In the pharmaceutical industry, poorly water-soluble drugs require enabling technologies to increase apparent solubility in the biological environment. Amorphous solid dispersion (ASD) has emerged as an attractive strategy that has been used to market more than 20 oral pharmaceutical products. The amorphous form is inherently unstable and exhibits phase separation and crystallization during shelf life storage. Polymers stabilize the amorphous drug by antiplasticization, reducing molecular mobility, reducing chemical potential of drug, and increasing glass transition temperature in ASD. Here, drug-polymer miscibility is an important contributor to the physical stability of ASDs. The current Review discusses the basics of drug-polymer interactions with the major focus on the methods for the evaluation of solubility and miscibility of the drug in the polymer. Methods for the evaluation of drug-polymer solubility and miscibility have been classified as thermal, spectroscopic, microscopic, solid-liquid equilibrium-based, rheological, and computational methods. Thermal methods have been commonly used to determine the solubility of the drug in the polymer, while other methods provide qualitative information about drug-polymer miscibility. Despite advancements, the majority of these methods are still inadequate to provide the value of drug-polymer miscibility at room temperature. There is still a need for methods that can accurately determine drug-polymer miscibility at pharmaceutically relevant temperatures.


Assuntos
Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Preparações Farmacêuticas/química , Polímeros/química , Varredura Diferencial de Calorimetria/métodos , Cristalização , Simulação de Dinâmica Molecular , Preparações Farmacêuticas/metabolismo , Polímeros/metabolismo , Solubilidade , Temperatura de Transição
20.
Mol Pharm ; 18(6): 2334-2348, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34003656

RESUMO

Numerous amorphous solid dispersion (ASD) formulations of celecoxib (CEL) have been attempted for enhancing the solubility, dissolution rate, and in vivo pharmacokinetics via high drug loading, polymer combination, or by surfactant addition. However, physical stability for long-term shelf life and desired in vivo pharmacokinetics remains elusive. Therefore, newer formulation strategies are always warranted to address poor aqueous solubility and oral bioavailability with extended shelf life. The present investigation elaborates a combined strategy of amorphization and salt formation for CEL, providing the benefits of enhanced solubility, dissolution rate, in vivo pharmacokinetics, and physical stability. We generated amorphous salts solid dispersion (ASSD) formulations of CEL via an in situ acid-base reaction involving counterions (Na+ and K+) and a polymer (Soluplus) using the spray-drying technique. The generated CEL-Na and CEL-K salts were homogeneously and molecularly dispersed in the matrix of Soluplus polymer. The characterization of generated ASSDs by differential scanning calorimetry revealed a much higher glass-transition temperature (Tg) than the pure amorphous CEL, confirming the salt formation of CEL in solid dispersions. The micro-Raman and proton nuclear magnetic resonance spectroscopy further confirmed the formation of salt at the -S═O position in the CEL molecules. CEL-Na-Soluplus ASSD exhibited a synergistic enhancement in the aqueous solubility (332.82-fold) and in vivo pharmacokinetics (9.83-fold enhancement in the blood plasma concentration) than the crystalline CEL. Furthermore, ASSD formulations were physically stable for nearly 1 year (352 days) in long-term stability studies at ambient conditions. Hence, we concluded that the ASSD is a promising strategy for CEL in improving the physicochemical properties and biopharmaceutical performance.


Assuntos
Celecoxib/química , Composição de Medicamentos/métodos , Excipientes/química , Administração Oral , Animais , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Celecoxib/administração & dosagem , Celecoxib/farmacocinética , Química Farmacêutica , Estabilidade de Medicamentos , Feminino , Modelos Animais , Polietilenoglicóis/química , Polivinil/química , Ratos , Solubilidade , Secagem por Atomização , Temperatura de Transição , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA