Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204217

RESUMO

In this paper, the study of surface modification of two-dimensional (2D), non-luminescent CdS nanoplates (NPLs) by thiol-containing ligands is presented. We show that a process of twophase transfers with appropriate ligand exchange transforms non-luminescent NPLs into spherical CdS nanoparticles (NPs) exhibiting a blue photoluminescence with exceptionally high quantum yield ~90%. In the process, transfer from inorganic solvent to water is performed, with appropriately selected ligand molecules and pH values (forward phase transfer), which produces NPs with modified size and shape. Then, in reverse phase transfer, NPs are transferred back to toluene due to surface modification by combined Cd (OL)2 and Cd (Ac)2. As a result, spherical NPs are formed (average diameter between 4 and 6 nm) with PL QY as high as 90%. This is unique for core only CdS NPs without inorganic shell.


Assuntos
Compostos de Cádmio/química , Nanopartículas/química , Pontos Quânticos/química , Sulfetos/química , Fenômenos Químicos , Técnicas de Química Sintética , Nanopartículas/ultraestrutura , Transição de Fase , Análise Espectral
2.
Materials (Basel) ; 14(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498501

RESUMO

In recent years, numerous protocols for nanoplatelet synthesis have been developed. Here, we present a facile, one-pot method for controlling cadmium sulfide (CdS) nanoparticles' shape that allows for obtaining zero-dimensional, one-dimensional, or two-dimensional structures. The proposed synthesis protocol is a simple heating-up approach and does not involve any inconvenient steps such as injection and/or pouring the precursors at elevated temperatures. Because of this, the synthesis protocol is highly repeatable. A gradual increase in the zinc acetate concentration causes the particles' shape to undergo a transition from isotropic quantum dots through rods to highly anisotropic nanoplatelets. We identified conditions at which synthesized platelets were purely five monolayers thick. All samples acquired during different stages of the reaction were characterized via optical spectroscopy, which allowed for the identification of the presence of high-temperature, magic-size clusters prior to the platelets' formation.

3.
Nanotechnology ; 32(7): 075705, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33105119

RESUMO

The results presented in this paper show how the optical properties and colloidal stability of quantum dots (QDs) vary depending on pH conditions. For this investigation, as-synthesized hydrophobic CdSe/CdS QDs were transferred to an aqueous medium by surface modification with 3-mercaptopropionic acid. The ligand exchange procedure was applied under three different pH conditions: acidic, neutral and alkaline, to obtain three kinds of hydrophilic QDs dispersed in phosphate buffer. The efficiency of the functionalization of QDs was estimated based on the changes in ABS and the highest value was obtained under acidic conditions (45%). The efficiency of photoluminescence (PL) was also best preserved under these conditions, although it was 30 times less than the PL of hydrophobic QDs. Then, all three kinds of hydrophilic QDs were dispersed in solutions with a wide range of pH (2-12) and investigated by absorbance and PL measurements. The results show that QDs subjected to a ligand exchange procedure are characterized by intensive PL at the selected pH values, which correspond to pKa of the ligand. This phenomenon is independent of the pH at which the ligand exchange procedure is conducted. Moreover, it was found that the PL intensity is preserved during the experiment for QDs functionalized under neutral conditions, whereas it decreases for acidic and increases for alkaline conditions.

4.
Nanomaterials (Basel) ; 9(2)2019 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30717393

RESUMO

Fundamentals of quantum dots (QDs) sensing phenomena show the predominance of these fluorophores over standard organic dyes, mainly because of their unique optical properties such as sharp and tunable emission spectra, high emission quantum yield and broad absorption. Moreover, they also indicate no photo bleaching and can be also grown as no blinking emitters. Due to these properties, QDs may be used e.g., for multiplex testing of the analyte by simultaneously detecting multiple or very weak signals. Physico-chemical mechanisms used for analyte detection, like analyte stimulated QDs aggregation, nonradiative Förster resonance energy transfer (FRET) exhibit a number of QDs, which can be applied in sensors. Quantum dots-based sensors find use in the detection of ions, organic compounds (e.g., proteins, sugars, volatile substances) as well as bacteria and viruses.

5.
RSC Adv ; 9(19): 10754-10759, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35515297

RESUMO

We proposed to exploit phosphomolybdic acid (PMA) as a cost-efficient MoO x source for combined spin-coating/sputtering/spin-coating deposition of a MoO x /Au/MoO x (MAM) composite electrode. The bottom PMA layer provides perfect wetting conditions for ultrathin Au film sputtering and prevents the formation of gold islands on the glass surface, while the top PMA layer helps to reduce light reflection. By optimizing the thickness of ultrathin Au films and PMA layers, we achieved maximum transmittance of 79% at 550 nm and a sheet resistance of only 22 Ω sq-1 which is comparable to the resistance of ITO substrates (20 Ω sq-1). MAM multilayer was explored both as a transparent electrode and as a hole injection layer (HIL) to eliminate ITO and PEDOT:PSS from solution-processed quantum-dot light-emitting diodes (QLEDs). The fabricated MAM-based QLED shows a peak external quantum efficiency (EQE) of 2.7% and maximum brightness of 12 000 cd m-2 at 7 V. By performing bending tests of the polyethylene (PET) substrate coated with MAM electrode, we demonstrate that it is also a promising candidate for flexible transparent optoelectronics.

6.
J Nanopart Res ; 19(8): 275, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824289

RESUMO

Specific rare earth doped nanocrystals (NCs), a recent class of nanoparticles with fluorescent features, have great bioanalytical potential. Neuroactive properties of NaYF4 nanocrystals doped with Eu3+ were assessed based on the analysis of their effects on glutamate- and γ-aminobutyric acid (GABA) transport process in nerve terminals isolated from rat brain (synaptosomes). Two types of hydrophilic NCs were examined in this work: (i) coated by polyethylene glycol (PEG) and (ii) with OH groups at the surface. It was found that NaYF4:Eu3+-PEG and NaYF4:Eu3+-OH within the concentration range of 0.5-3.5 and 0.5-1.5 mg/ml, respectively, did not influence Na+-dependent transporter-dependent l-[14C]glutamate and [3H]GABA uptake and the ambient level of the neurotransmitters in the synaptosomes. An increase in NaYF4:Eu3+-PEG and NaYF4:Eu3+-OH concentrations up to 7.5 and 3.5 mg/ml, respectively, led to the (1) attenuation of the initial velocity of uptake of l-[14C]glutamate and [3H]GABA and (2) elevation of ambient neurotransmitters in the suspension of nerve terminals. In the mentioned concentrations, nanocrystals did not influence acidification of synaptic vesicles that was shown with pH-sensitive fluorescent dye acridine orange, however, decreased the potential of the plasma membrane of synaptosomes. In comparison with other nanoparticles studied with similar methodological approach, NCs start to exhibit their effects on neurotransmitter transport at concentrations several times higher than those shown for carbon dots, detonation nanodiamonds and an iron storage protein ferritin, whose activity can be registered at 0.08, 0.5 and 0.08 mg/ml, respectively. Therefore, NCs can be considered lesser neurotoxic as compared to above nanoparticles.

7.
J Nanopart Res ; 19(2): 68, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28250714

RESUMO

Sodium fluoride-based ß-NaLnF4 nanoparticles (NPs) doped with lanthanide ions are promising materials for application as luminescent markers in bio-imaging. In this work, the effect of NPs doped with yttrium (Y), gadolinium (Gd), europium (Eu), thulium (Tm), ytterbium (Yb) and terbium (Tb) ions on phagocytic activity of monocytes and granulocytes and the respiratory burst was examined. The surface functionalization of <10-nm NPs was performed according to our variation of patent pending ligand exchange method that resulted in meso-2,3-dimercaptosuccinic acid (DMSA) molecules on their surface. Y-core-based NCs were doped with Eu ions, which enabled them to be excited with UV light wavelengths. Cultures of human peripheral blood (n = 8) were in vitro treated with five different concentrations of eight NPs for 24 h. In summary, neither type of nanoparticles is found toxic with respect to conducted test; however, some cause toxic effects (they have statistically significant deviations compared to reference) in some selected doses tested. Both core types of NPs (Y-core and Gd-core) impaired the phagocytic activity of monocytes the strongest, having minimal or none whatsoever influence on granulocytes and respiratory burst of phagocytic cells. The lowest toxicity was observed in Gd-core, Yb, Tm dopants and near-infrared nanoparticles. Clear dose-dependent effect of NPs on phagocytic activity of leukocytes and respiratory burst of cells was observed for limited number of samples.

9.
Dalton Trans ; 43(43): 16424-30, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25247625

RESUMO

Ultra-small PbSe nanocrystals (NCs) were synthesized via a 'one-pot' approach in olive oil as the reaction medium and capping agent. The optical spectra showed discernible blue shifts in the absorption band edges (570-780 nm) due to strong quantum confinement effects and photoluminescence (PL) spectra showed significant strong emission peaks in the range of 780-850 nm. The broad peaks in the powder X-ray diffraction (p-XRD) pattern indicate the ultra-small size of the as-prepared NCs. These NCs were used to construct an extremely thin absorber (ETA) solar device after surface modification. The preliminary results indicate their potential as light harvesting entities in nanostructure based solar cells.

10.
J Appl Toxicol ; 34(11): 1220-5, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25179008

RESUMO

In vitro immunotoxicity of hydrophobic sodium fluoride-based nanocrystals (NCs) doped with lanthanide ions was examined in this study. Although there is already a significant amount of optical and structural data on NaYF4 NCs, data on safety assessment are missing. Therefore, peripheral whole blood from human volunteers was used to evaluate the effect of 25 and 30 nm hydrophobic NaYF4 NCs dissolved in cyclohexane (CH) on lymphocytes, and of 10 nm NaYF4 NCs on phagocytes. In the concentration range 0.12-75 µg cm(-2) (0.17-106 µg ml(-1) ), both 25 and 30nm NaYF4 NCs did not induce cytotoxicity when measured as incorporation of [(3) H]-thymidine into DNA. Assessment of lymphocyte function showed significant suppression of the proliferative activity of T-lymphocytes and T-dependent B-cell response in peripheral blood cultures (n = 7) stimulated in vitro with mitogens phytohemagglutinin (PHA) and pokeweed (PWM) (PHA > PWM). No clear dose-response effect was observed. Phagocytic activity and respiratory burst of leukocytes (n = 5-8) were generally less affected. A dose-dependent suppression of phagocytic activity of granulocytes in cultures treated with 25 nm NCs was observed (vs. medium control). A decrease in phagocytic activity of monocytes was found in cells exposed to higher doses of 10 and 30 nm NCs. The respiratory burst of phagocytes was significantly decreased by exposure to the middle dose of 30 nm NCs only. In conclusion, our results demonstrate immunotoxic effects of hydrophobic NaYF4 NCs doped with lanthanide ions to lymphocytes and to lesser extent to phagocytes. Further research needs to be done, particularly faze transfer of hydrophobic NCs to hydrophilic ones, to eliminate the solvent effect.


Assuntos
Linfócitos B/efeitos dos fármacos , Elementos da Série dos Lantanídeos/toxicidade , Nanopartículas/toxicidade , Fagócitos/efeitos dos fármacos , Fluoreto de Sódio/toxicidade , Linfócitos T/efeitos dos fármacos , Adulto , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Pessoa de Meia-Idade , Mitógenos/farmacologia , Fito-Hemaglutininas
11.
Croat Med J ; 55(3): 186-94, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24891277

RESUMO

AIM: To develop specific fluorescent markers for melanoma tumor visualization, which would provide high selectivity and reversible binding pattern, by the use of carbohydrate-recognizing proteins, lectins, combined with the physical ability for imaging deep in the living tissues by utilizing red and near infrared fluorescent properties of specific rare-earth doped nanocrystals (NC). METHODS: B10F16 melanoma cells were inoculated to C57BL/6 mice for inducing experimental melanoma tumor. Tumors were removed and analyzed by lectin-histochemistry using LABA, PFA, PNA, HPA, SNA, GNA, and NPL lectins and stained with hematoxylin and eosin. NPL lectin was conjugated to fluorescent NaGdF4:Eu(3+)-COOH nanoparticles (5 nm) via zero length cross-linking reaction, and the conjugates were purified from unbound substances and then used for further visualization of histological samples. Fluorescent microscopy was used to visualize NPL-NaGdF4:Eu(3+) with the fluorescent emission at 600-720 nm range. RESULTS: NPL lectin selectively recognized regions of undifferentiated melanoblasts surrounding neoangiogenic foci inside melanoma tumor, PNA lectin recognized differentiated melanoblasts, and LCA and WGA were bound to tumor stroma regions. NPL-NaGdF4:Eu(3+) conjugated NC were efficiently detecting newly formed regions of melanoma tumor, confirmed by fluorescent microscopy in visible and near infrared mode. These conjugates possessed high photostability and were compatible with convenient xylene-based mounting systems and preserved intensive fluorescent signal at samples storage for at least 6 months. CONCLUSION: NPL lectin-NaGdF4:Eu(3+) conjugated NC permitted distinct identification of contours of the melanoma tissue on histological sections using red excitation at 590-610 nm and near infrared emission of 700-720 nm. These data are of potential practical significance for development of glycans-conjugated nanoparticles to be used for in vivo visualization of melanoma tumor.


Assuntos
Antígenos de Neoplasias/metabolismo , Antígenos Glicosídicos Associados a Tumores/metabolismo , Lectinas/metabolismo , Melanoma Experimental/metabolismo , Microscopia de Fluorescência/métodos , Proteínas de Neoplasias/metabolismo , Neoplasias Cutâneas/metabolismo , Animais , Corantes Fluorescentes , Histocitoquímica , Humanos , Melanoma Experimental/patologia , Metais Terras Raras , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas , Neoplasias Cutâneas/patologia
12.
Phys Chem Chem Phys ; 15(44): 19232-41, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24108220

RESUMO

A comprehensive characterization of NaYF4 nanocrystals synthesized in trioctylphosphine oxide has been reported in order to present an effective method of monodisperse, small, hexagonal nanocrystal synthesis in a high boiling organic solvent via a co-thermolysis pathway. We observed the influence of temperature, Na/Y precursors ratio and time of the synthesis on the nanocrystals size, shape and crystal structure. For that purpose, we characterized the structure of as-synthesized nanocrystals by X-ray diffraction and transmission electron microscopy. Moreover, all nanocrystals were doped with Eu(3+) ions, which were used as an optical crystal field probe. We applied photoluminescence, PL excitation and absorbance spectra to determine the influence of crystal symmetry, surface to volume ratio and ligands on the optical properties of doped Eu(3+) ions. It was found that trioctylphosphine oxide reduces the free-energy barrier and stimulates the NaYF4 crystallization in the hexagonal phase, even at relatively low temperature. A similar effect was observed when the excess of sodium trifluoroacetate precursors was used. Moreover, the presented nanocrystal evolution within synthesis time confirmed that at suitable conditions NaYF4 crystallized in the hexagonal phase within less than 5 min. Optical spectroscopy investigations confirmed the high quality of small ß-NaYF4:Eu(3+) nanocrystals, which are promising candidates for e.g. optical markers in the visible wavelength range.


Assuntos
Fluoretos/química , Nanopartículas/química , Ítrio/química , Cristalização , Európio/química , Íons/química , Ligantes , Compostos Organofosforados/química , Tamanho da Partícula , Transição de Fase , Espectrometria de Fluorescência , Temperatura
13.
Nanoscale ; 5(1): 429-36, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23187811

RESUMO

The purely hexagonal phase of ultrasmall (~10 nm) NaYF(4) nanocrystals (NCs), containing different Eu concentrations, has been obtained by a modified co-thermolysis method. Detailed investigations of the excitation and relaxation mechanisms of the Eu ions in such NCs are reported. Based on the photoluminescence excitation, absorbance, photoluminescence and emission decay times measured as a function of the excitation wavelengths, it has been shown that two Eu sites with different excitation and relaxation characteristics are present in the case of ultrasmall NaYF(4) NCs. It has been shown that, when the Eu concentration increases, strong ion-ion interactions influence the relaxation phenomena in Eu ions, changing their optical properties. Moreover, these ion-ion interactions enable connections between the surface ions and the internal ones via energy transfer from the surface to the NCs core. Furthermore, it has been proposed that the different kinetic properties of the surface Eu ions are mainly caused by the formation of a charge transfer state between the ions and ligand groups attached to the NCs surface.


Assuntos
Fluoretos/química , Íons/química , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Ítrio/química , Condutividade Elétrica , Transporte de Elétrons , Teste de Materiais , Tamanho da Partícula
14.
J Am Chem Soc ; 133(14): 5602-9, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21417449

RESUMO

Truly alloyed PbS(x)Se(1-x) (x = 0-1) nanocrystals (∼5 nm in size) have been prepared, and their resulting optical properties are red-shifted systematically as the sulfur content of the materials increases. Their optical properties are discussed using a modified Vegard's approach and the bowing parameter for these nanoalloys is reported for the first time. The alloyed structure of the nanocrystals is supported by the energy-filtered transmission electron microscope images of the samples, which show a homogeneous distribution of sulfur and selenium within the nanocrystals. X-ray photoelectron spectroscopy studies on ligand-exchanged nanocrystals confirmed the expected stoichiometry and various oxidized species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...