Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 8(2)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37366812

RESUMO

Tilapia (Oreochromis niloticus) is a widely cultivated fish in tropical and subtropical regions such as the Philippines, generating substantial waste during processing, including bones that are a valuable source of extracellular matrix (ECM). However, the extraction of ECM from fish bones requires an essential step of demineralization. This study aimed to assess the efficiency of tilapia bone demineralization using 0.5 N HCl at different time durations. By evaluating the residual calcium concentration, reaction kinetics, protein content, and extracellular matrix (ECM) integrity through histological analysis, composition assessment, and thermal analysis, the effectiveness of the process was determined. Results revealed that after 1 h of demineralization, the calcium and protein contents were 1.10 ± 0.12% and 88.7 ± 0.58 µg/mL, respectively. The study found that after 6 h, the calcium content was almost completely removed, but the protein content was only 51.7 ± 1.52 µg/mL compared to 109.0 ± 1.0 µg/mL in native bone tissue. Additionally, the demineralization reaction followed second-order kinetics with an R2 value of 0.9964. Histological analysis using H&E staining revealed a gradual disappearance of the basophilic components and the emergence of lacunae, which can be attributed to decellularization and mineral content removal, respectively. As a result, organic components such as collagen remained in the bone samples. ATR-FTIR analysis showed that all demineralized bone samples retained collagen type I markers, including amide I, II, and III, amides A and B, and symmetric and antisymmetric CH2 bands. These findings provide a route for developing an effective demineralization protocol to extract high-quality ECM from fish bones, which could have important nutraceutical and biomedical applications.

2.
Biomimetics (Basel) ; 7(4)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36546913

RESUMO

Milkfish (Chanos chanos) is an abundant fish commodity in the Philippines that generates a large number of wastes such as skin, scales, viscera, and bones, which, upon disposal, cause environmental pollution. The abundance of these wastes, such as fish skin, rich in bioactive natural products such as collagen, elicits interest in their conversion into high-market-value products. The decellularization of milkfish skin waste can extract its extracellular matrix (ECM), a potential raw material for biomedical applications such as the repair of damaged skin tissues. In particular, this study characterized the developed decellularized ECM with different concentrations (0.1%, 1.0%) of the decellularizing agents (Triton X-100, SDS) and temperature (4 °C, room temperature) using milkfish skin. The decellularized ECM structure was better preserved using Triton X-100, while SDS was more effective in cell component removal, especially at 1% concentration and 4 °C temperature. There were significant effects of varying the temperatures and concentrations on the physical and mechanical properties of the decellularized ECM. Future studies could explore more variables to further establish protocols and more analyses to better characterize the decellularized milkfish skin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...