Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(5): 7583-7593, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439436

RESUMO

In this work, we employ 87Rb atoms as rotation media to manipulate the polarization of optical fields in both magnetic and magnetic-free environments. Employing the nonlinear magneto-optical rotation mechanism, we achieve a state-of-the-art magneto-optical rotation coefficient of 1.74×108 rad⋅T-1⋅m-1 which is four orders of magnitude higher than commonly employed materials. Additionally, in a magnetic-free environment, we achieve all-optical cross-polarization modulation between the pump and probe light via Rb atoms. The nonlinear magneto-optical rotation configuration introduces inventive techniques for a new type of magneto-optical modulator while the all-optical configuration paves the way for exploring photonic integrated circuit (PIC) devices free from disruptions caused by electrical or magnetic crosstalk.

2.
Opt Express ; 31(21): 34779-34788, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859226

RESUMO

We demonstrate an atomic magnetometry using amplitude-modulated pumping and hyperfine repumping techniques in a paraffin-coated cell. By exploiting the constructive interference between spins polarized by the pump beam and an additional repump beam, we observe a three-fold increase in the amplitude of magnetic resonance, along with a reduction in linewidth by approximately two times. The implementation of the repump beam effectively narrows the linewidth, demonstrating successful suppression of spin-exchange relaxation. This reduction in relaxation rate, combined with the enhanced signal, significantly improves the sensitivity of the magnetometer. Consequently, our technique offers a promising approach for achieving SERF-like magnetometry with sub-fT-level sensitivity in Earth-field range and room-temperature environment.

3.
Sci Adv ; 9(15): eadg1760, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37043567

RESUMO

In the past few decades, optical magnetometry has experienced remarkable development and reached to an outstanding sensitivity. For magnetometry based on optical readout of atomic ensemble, the fundamental limitation of sensitivity is restricted by spin projection noise and photon shot noise. Meanwhile, in practical applications, ambient magnetic noise also greatly limits the sensitivity. To achieve the best sensitivity, it is essential to find an efficacious way to eliminate the noises from different sources, simultaneously. Here, we demonstrate a quantum magnetic gradiometer with sub-shot-noise sensitivity using entangled twin beams with differential detection. The quantum enhancement spans a frequency range from 7 Hz to 6 MHz with maximum squeezing of 5.5 dB below the quantum noise limit. The sensitivity of gradiometer reaches 18 fT/cm[Formula: see text] at 20 Hz. Our study inspires future possibilities to use quantum-enhanced technology in developing sensitive magnetometry for practical applications in noisy and physically demanding environments.

4.
Opt Express ; 30(10): 17106-17114, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221540

RESUMO

In this paper, we report on -3.5±0.2 dB vacuum squeezing (corresponding to -4.2±0.2 dB with loss correction) at 795 nm via the polarization self-rotation (PSR) effect in rubidium vapor by applying a magnetic field, whose direction is perpendicular to the propagation and polarization of the pump light. Compared with the case without the magnetic field, whose optimal squeezing degree is about -1.5 dB, this weak magnetic field can enhance the PSR effect and ultimately increase the squeezing degree. This compact squeezed light source can be potentially utilized in quantum protocols in which atomic ensembles are involved, such as in quantum memory, atomic magnetometers and quantum interferometers.

5.
Opt Express ; 30(7): 11514-11523, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35473094

RESUMO

The SU (1,1)-type atom-light hybrid interferometer (SALHI) is a kind of interferometer that is sensitive to both the optical phase and atomic phase. However, the loss has been an unavoidable problem in practical applications and greatly limits the use of interferometers. Visibility is an important parameter to evaluate the performance of interferometers. Here, we experimentally demonstrate the mitigating effect of the loss on visibility of the SALHI via asymmetric gain optimization, where the maximum threshold of loss to visibility close to 100% is increased. Furthermore, we theoretically find that the optimal condition for the largest visibility is the same as that for the enhancement of signal-to-noise ratio (SNR) to the best value with the existence of the losses using the intensity detection, indicating that visibility can act as an experimental operational criterion for SNR improvement in practical applications. Improvement of the interference visibility means achievement of SNR enhancement. Our results provide a significant foundation for practical application of the SALHI in radar and ranging measurements.

6.
Phys Rev Lett ; 128(3): 033601, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35119880

RESUMO

We present experimental and theoretical results on a new interferometer topology that nests a SU(2) interferometer, e.g., a Mach-Zehnder or Michelson interferometer, inside a SU(1,1) interferometer, i.e., a Mach-Zehnder interferometer with parametric amplifiers in place of beam splitters. This SU(2)-in-SU(1,1) nested interferometer (SISNI) simultaneously achieves a high signal-to-noise ratio (SNR), sensitivity beyond the standard quantum limit (SQL) and tolerance to photon losses external to the interferometer, e.g., in detectors. We implement a SISNI using parametric amplification by four-wave mixing (FWM) in Rb vapor and a laser-fed Mach-Zehnder SU(2) interferometer. We observe path-length sensitivity with SNR 2.2 dB beyond the SQL at power levels (and thus SNR) 2 orders of magnitude beyond those of previous loss-tolerant interferometers. We find experimentally the optimal FWM gains and find agreement with a minimal quantum noise model for the FWM process. The results suggest ways to boost the in-practice sensitivity of high-power interferometers, e.g., gravitational wave interferometers, and may enable high-sensitivity, quantum-enhanced interferometry at wavelengths for which efficient detectors are not available.

7.
Rev Sci Instrum ; 92(4): 045103, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243417

RESUMO

A coil system to generate a uniform field is urgently needed in quantum experiments. However, general coil configurations based on the analytical method have not considered practical restrictions, such as the region for coil placement due to holes in the center of the magnetic shield, which could not be directly applied in most of the quantum experiments. In this paper, we develop a coil design method for quantum experiments using hybrid machine learning. The algorithm part consists of a machine learner based on an artificial neural network and a differential evolution (DE) learner. The cooperation of both learners demonstrates its higher efficiency than a single DE learner and robustness in the coil optimization problem compared with analytical proposals. With the help of a DE learner, in numerical simulation, a machine learner can successfully design coaxial coil systems that generate fields whose relative inhomogeneity in a 25 mm-long central region is ∼10-6 under constraints. In addition, for experiments, a coil system with 0.069% inhomogeneity of the field, designed by a machine learner, is constructed, which is mainly limited by machining the precision of the circuit board. Benefitting from machine learning's high-dimension optimization capabilities, our coil design method is convenient and has potential for various quantum experiments.

8.
Phys Rev Lett ; 120(3): 033202, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29400503

RESUMO

The nonlinear Zeeman effect can induce splitting and asymmetries of magnetic-resonance lines in the geophysical magnetic-field range. This is a major source of "heading error" for scalar atomic magnetometers. We demonstrate a method to suppress the nonlinear Zeeman effect and heading error based on spin locking. In an all-optical synchronously pumped magnetometer with separate pump and probe beams, we apply a radio-frequency field which is in phase with the precessing magnetization. This results in the collapse of the multicomponent asymmetric magnetic-resonance line with ∼100 Hz width in the Earth-field range into a single peak with a width of 22 Hz, whose position is largely independent of the orientation of the sensor within a range of orientation angles. The technique is expected to be broadly applicable in practical magnetometry, potentially boosting the sensitivity and accuracy of Earth-surveying magnetometers by increasing the magnetic-resonance amplitude, decreasing its width, and removing the important and limiting heading-error systematic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...