Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Adv Mater ; 36(7): e2306756, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37819771

RESUMO

A typical Tesla thermomagnetic engine employs a solid magnetic wheel to convert thermal energy into mechanical energy, while thermomagnetic convection in ferrofluid is still challenging to observe because it is a volume convection that occurs in an enclosed space. Using a water-based ferrofluid, a liquid Tesla thermomagnetic engine is demonstrated and reports the observation of thermomagnetic convection on a free surface. Both types of fluid motions are driven by light and observed by simply placing ferrofluid on a cylindrical magnet. The surface thermomagnetic convection on the free surface is made possible by eliminating the Marangoni effect, while the spinning of the liquid wheel is achieved through the solid-like behavior of the ferrofluid under a strong magnetic field. Increasing the magnetic field reveals a transition from simple thermomagnetic convection to a combination of the central spin of the spiky wheel surrounded by thermomagnetic convection in the outer region of the ferrofluid. The coupling between multiple ferrofluid wheels through a fluid bridge is further demonstrated. These demonstrations not only unveil the unique properties of ferrofluid but also provide a new platform for studying complex fluid dynamics and thermomagnetic convection, opening up exciting opportunities for light-controlled fluid actuation and soft robotics.

2.
Adv Mater ; 35(44): e2306097, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37607336

RESUMO

Developing non-precious catalysts with long-term catalytic durability and structural stability under industrial conditions is the key to practical alkaline anion exchange membrane (AEM) water electrolysis. Here, an energy-saving approach is proposed to synthesize defect-rich iron nickel oxyhydroxide for stability and efficiency toward the oxygen evolution reaction. Benefiting from in situ cation exchange, the nanosheet-nanoflake-structured catalyst is homogeneously embedded in, and tightly bonded to, its substrate, making it ultrastable at high current densities. Experimental and theoretical calculation results reveal that the introduction of Ni in FeOOH reduces the activation energy barrier for the catalytic reaction and that the purposely created oxygen defects not only ensure the exposure of active sites and maximize the effective catalyst surface but also modulate the local coordination environment and chemisorption properties of both Fe and Ni sites, thus lowering the energy barrier from *O to *OOH. Consequently, the optimized d-(Fe,Ni)OOH catalyst exhibits outstanding catalytic activity with long-term durability under both laboratory and industrial conditions. The large-area d-(Fe,Ni)OOH||NiMoN pair requires 1.795 V to reach a current density of 500 mA cm-2 at an absolute current of 12.5 A in an AEM electrolyzer for overall water electrolysis, showing great potential for industrial water electrolysis.

3.
ACS Appl Mater Interfaces ; 15(29): 34797-34808, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37433096

RESUMO

InP quantum dots (QDs) are promising building blocks for use in solar technologies because of their low intrinsic toxicity, narrow bandgap, large absorption coefficient, and low-cost solution synthesis. However, the high surface trap density of InP QDs reduces their energy conversion efficiency and degrades their long-term stability. Encapsulating InP QDs into a wider bandgap shell is desirable to eliminate surface traps and improve optoelectronic properties. Here, we report the synthesis of "giant" InP/ZnSe core/shell QDs with tunable ZnSe shell thickness to investigate the effect of the shell thickness on the optoelectronic properties and the photoelectrochemical (PEC) performance for hydrogen generation. The optical results demonstrate that ZnSe shell growth (0.9-2.8 nm) facilitates the delocalization of electrons and holes into the shell region. The ZnSe shell simultaneously acts as a passivation layer to protect the surface of InP QDs and as a spatial tunneling barrier to extract photoexcited electrons and holes. Thus, engineering the ZnSe shell thickness is crucial for the photoexcited electrons and hole transfer dynamics to tune the optoelectronic properties of "giant" InP/ZnSe core/shell QDs. We obtained an outstanding photocurrent density of 6.2 mA cm-1 for an optimal ZnSe shell thickness of 1.6 nm, which is 288% higher than the values achieved from bare InP QD-based PEC cells. Understanding the effect of shell thickness on surface passivation and carrier dynamics offers fundamental insights into the suitable design and realization of eco-friendly InP-based "giant" core/shell QDs toward improving device performance.

4.
J Phys Chem Lett ; 14(29): 6702-6708, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37467492

RESUMO

The Tauc plot is widely used to determine the bandgap of semiconductors, but the actual plot often exhibits significant baseline absorption below the expected bandgap, leading to bandgap discrepancies from two different extrapolations. In this work, we first discuss the origin of baseline absorption and show that both extrapolation methods can produce significant errors by simulating Tauc plots with varying levels of baseline absorption. We then propose and experimentally verify a new method that idealizes the absorption spectrum by removing its baseline before constructing the Tauc plot. Finally, we apply this new method to cubic boron arsenide (c-BAs), resolve its bandgap discrepancies, and obtain a converging bandgap of 1.835 eV based on both previous and new transmission spectra. The method is applicable to both indirect and direct bandgap semiconductors with absorption spectrum measured via transmission or diffuse reflectance, which will become essential to obtain accurate values of their bandgaps.

5.
Nanomicro Lett ; 15(1): 157, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336833

RESUMO

NiMo-based nanostructures are among the most active hydrogen evolution reaction (HER) catalysts under an alkaline environment due to their strong water dissociation ability. However, these nanostructures are vulnerable to the destructive effects of H2 production, especially at industry-standard current densities. Therefore, developing a strategy to improve their mechanical strength while maintaining or even further increasing the activity of these nanocatalysts is of great interest to both the research and industrial communities. Here, a hierarchical interconnected NiMoN (HW-NiMoN-2h) with a nanorod-nanowire morphology was synthesized based on a rational combination of hydrothermal and water bath processes. HW-NiMoN-2h is found to exhibit excellent HER activity due to the accomodation of abundant active sites on its hierarchical morphology, in which nanowires connect free-standing nanorods, concurrently strengthening its structural stability to withstand H2 production at 1 A cm-2. Seawater is an attractive feedstock for water electrolysis since H2 generation and water desalination can be addressed simultaneously in a single process. The HER performance of HW-NiMoN-2h in alkaline seawater suggests that the presence of Na+ ions interferes with the reation kinetics, thus lowering its activity slightly. However, benefiting from its hierarchical and interconnected characteristics, HW-NiMoN-2h is found to deliver outstanding HER activity of 1 A cm-2 at 130 mV overpotential and to exhibit excellent stability at 1 A cm-2 over 70 h in 1 M KOH seawater.

6.
Transl Cancer Res ; 12(3): 572-584, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37033345

RESUMO

Background: Sphingosine kinase 1 (SPHK1) is a key enzyme that catalyzes the phosphorylation of sphingosine. Recent studies reported SPHK1 to be associated with renal cell carcinoma (RCC) progression by inducing targeted therapy resistance. However, the expression and the clinical significance of SPHK1 on RCC in those having received targeted therapy have not been elucidated. The present study explored the expression of SPHK1 in RCC tissues from targeted therapy recipients, the correlation of SPHK1 with clinicopathological parameters, and the effect of SPHK1 on RCC patient prognosis. Methods: Differential gene expression analysis of RCC treated with and without targeted therapy was performed. The correlations of SPHK1 expression with clinical parameters of RCC were examined. Gene set enrichment analysis (GSEA) was performed to clarify the potential role of SPHK1 associated with targeted therapy resistance. The value of SPHK1 as a diagnostic marker for RCC was also evaluated. The Kaplan-Meier method was applied to analyze the correlation between SPHK1 expression and patient survival rate by using the clinical data from patients with RCC. Results: Significant overexpression of SPHK1 was detected in RCC treated with targeted therapy. SPHK1 expression was closely correlated with RCC progression-related clinicopathological parameters. Therefore, elevated SPHK1 could effectively diagnose RCC and distinguish RCC with an advanced clinical stage and a high pathological grade. SPHK1 was associated with the stemness of RCC cells via the activation of the Wnt, Hedgehog, or Notch signaling pathways in targeted drug-treated or untreated RCC. Survival analysis of a large cohort of RCC samples indicated overexpression of SPHK1 to be inversely correlated with the overall and disease-free survival of patients with RCC. Conclusions: Our study indicated that SPHK1 associated with targeted therapy resistance could serve as a potential prognostic marker and a valuable biomarker of response to angiogenic agents in RCC.

7.
Nat Commun ; 14(1): 1203, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864061

RESUMO

Large numbers of leaves fall on the earth each autumn. The current treatments of dead leaves mainly involve completely destroying the biocomponents, which causes considerable energy consumption and environmental issues. It remains a challenge to convert waste leaves into useful materials without breaking down their biocomponents. Here, we turn red maple dead leaves into an active three-component multifunctional material by exploiting the role of whewellite biomineral for binding lignin and cellulose. Owing to its intense optical absorption spanning the full solar spectrum and the heterogeneous architecture for effective charge separation, films of this material show high performance in solar water evaporation, photocatalytic hydrogen production, and photocatalytic degradation of antibiotics. Furthermore, it also acts as a bioplastic with high mechanical strength, high-temperature tolerance, and biodegradable features. These findings pave the way for the efficient utilization of waste biomass and innovations of advanced materials.


Assuntos
Celulose , Lignina , Biopolímeros , Antibacterianos , Biomassa
8.
Chemosphere ; 322: 138174, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36806807

RESUMO

Converting waste plastic into valuable carbon materials as the electrode for supercapacitors represents a sustainable way to deal with the severe waste plastic-related environmental issues. However, ideal carbon materials for supercapacitors require not only a large specific surface area but also abundant meso/macropores, which is still challenging for conventional synthesis methods. Herein, MgO-templated pyrolysis with chemical activation was demonstrated as an effective approach to convert waste polyethylene terephthalate (PET) plastic bottles into 3D meso/macroporous carbon (MMPC) with both large total surface area (1863.55 m2/g) and meso/macropore surface area (1478.46 m2/g). Furthermore, it exhibited a high capacitance of 191.4 F/g and an excellent rate capability (86.3% retention from 0.5 to 10 A/g) for supercapacitor. This work provides not only a facile approach to synthesize 3D meso/macroporous carbon materials but also a sustainable way to mitigate plastic-derived pollution.


Assuntos
Carbono , Plásticos , Óxido de Magnésio , Pirólise , Porosidade , Eletrodos
9.
Adv Sci (Weinh) ; 10(2): e2204424, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36437041

RESUMO

Enhancing electron correlation in a weakly interacting topological system has great potential to promote correlated topological states of matter with extraordinary quantum properties. Here, the enhancement of electron correlation in a prototypical topological metal, namely iridium dioxide (IrO2 ), via doping with 3d transition metal vanadium is demonstrated. Single-crystalline vanadium-doped IrO2 nanowires are synthesized through chemical vapor deposition where the nanowire yield and morphology are improved by creating rough surfaces on substrates. Vanadium doping leads to a dramatic decrease in Raman intensity without notable peak broadening, signifying the enhancement of electron correlation. The enhanced electron correlation is further evidenced by transport studies where the electrical resistivity is greatly increased and follows an unusual T $\sqrt T $ dependence on the temperature (T). The lattice thermal conductivity is suppressed by an order of magnitude via doping even at room temperature where phonon-impurity scattering becomes less important. Density functional theory calculations suggest that the remarkable reduction of thermal conductivity arises from the complex phonon dispersion and reduced energy gap between phonon branches, which greatly enhances phase space for phonon-phonon Umklapp scattering. This work demonstrates a unique system combining 3d and 5d transition metals in isostructural materials to enrich the system with various types of interactions.

10.
J Phys Chem Lett ; 14(1): 1-8, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36562535

RESUMO

Sodium hydride (NaH) was unprecedently embedded inside graphene nanobubbles via the discovered reaction between NaH and CO. With the graphene nanobubble as a nanoreactor for NaH, we directly observed the electron-beam-induced decomposition process of graphene-covered NaH by in situ high-resolution transmission electron microscopy with energy dispersive spectrometry and electron energy loss spectroscopy, revealing its decomposition mechanism. This can provide guidance for the design of hydrogen storage materials.

11.
Chemosphere ; 309(Pt 1): 136691, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36209848

RESUMO

Zinc oxide (ZnO), which is widely applied for ultraviolet-light driven photocatalysis, has no activity in visible-light photocatalytic process due to its large band gap of ∼3.2 eV. Herein, however, we demonstrated the multiple self-promotion effects of tetracycline as band adjuster, photo-sensitizer, and charge transfer promoter for ZnO nanorods, realizing its visible-light photocatalytic degradation with an excellent removal efficiency up to 91.1% within only 2 h. Besides, the influence of complex realistic factors on this unique process was evaluated together with tests with realistic water matrices. Furthermore, the active species and degradation products were identified. Both acute and developmental toxicities were found to be reduced as the degradation proceeds. These results pave the path for the brand-new self-driven visible-light photocatalysis.


Assuntos
Nanotubos , Óxido de Zinco , Catálise , Tetraciclina , Água
12.
Chemosensors (Basel) ; 10(8)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36072130

RESUMO

Fluorescence-based microarray offers great potential in clinical diagnostics due to its high-throughput capability, multiplex capabilities, and requirement for a minimal volume of precious clinical samples. However, the technique relies on expensive and complex imaging systems for the analysis of signals. In the present study, we developed a smartphone-based application to analyze signals from protein microarrays to quantify disease biomarkers. The application adopted Android Studio open platform for its wide access to smartphones, and Python was used to design a graphical user interface with fast data processing. The application provides multiple user functions such as "Read", "Analyze", "Calculate" and "Report". For rapid and accurate results, we used ImageJ, Otsu thresholding, and local thresholding to quantify the fluorescent intensity of spots on the microarray. To verify the efficacy of the application, three antigens each with over 110 fluorescent spots were tested. Particularly, a positive correlation of over 0.97 was achieved when using this analytical tool compared to a standard test for detecting a potential biomarker in lupus nephritis. Collectively, this smartphone application tool shows promise for cheap, efficient, and portable on-site detection in point-of-care diagnostics.

13.
Front Oncol ; 12: 929838, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059676

RESUMO

Background: ACO1 and IREB2 are two homologous cytosolic regulatory proteins, which sense iron levels and change iron metabolism-linked molecules. These two genes were noticeably decreased in kidney renal clear cell carcinoma (KIRC), which confer poor survival. Meanwhile, there is a paucity of information about the mechanisms and clinical significance of ACO1 and IREB2 downregulation in renal cancers. Methods: The expression profiles of ACO1 and IREB2 were assessed using multiple public data sets via several bioinformatics platforms. Clinical and pathological information was utilized to stratify cohorts for comparison. Patient survival outcomes were evaluated using the Kaplan-Meier plotter, a meta-analysis tool. The correlations of ACO1 and IREB2 with ferroptosis were further evaluated in The Cancer Genome Atlas (TCGA)-KIRC database. Tumor immune infiltration was analyzed using the CIBERSORT, TIMER, and GEPIA data resources. ACO1 antagonist sodium oxalomalate (OMA) and IREB2 inhibitor sodium nitroprusside (SNP) was used to treat renal cancer ACHN cells together with sorafenib. Results: KIRC patients with low ACO1 or IREB2 contents exhibited a remarkably worse survival rate in contrast with those with high expression in Kaplan-Meier survival analyses. Meanwhile, ACO1 and IREB2 regulate autophagy-linked ferroptosis along with immune cell invasion in the tumor microenvironment in KIRC patients. Blocking the activation of these two genes by their inhibitors OMA and SNP ameliorated sorafenib-triggered cell death, supporting that ACO1 and IREB2 could be participated in its cytotoxic influence on renal cancer cells. Conclusion: ACO1 and IREB2 downregulation in renal cancers were correlated with cancer aggressiveness, cellular iron homeostasis, cytotoxic immune cell infiltration, and patient survival outcomes. Our research is integral to verify the possible significance of ACO1 and IREB2 contents as a powerful signature for targeted treatment or novel immunotherapy in clinical settings.

14.
Chem Sci ; 13(30): 8804-8812, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35975154

RESUMO

In this work we introduce a new series of ratiometric oxygen sensors based on phosphorescent cyclometalated iridium centers partnered with organic coumarin fluorophores. Three different cyclometalating ligands and two different pyridyl-containing coumarin types were used to prepare six target complexes with tunable excited-state energies. Three of the complexes display dual emission, with fluorescence arising from the coumarin ligand, and phosphorescence from either the cyclometalated iridium center or the coumarin. These dual-emitting complexes function as ratiometric oxygen sensors, with the phosphorescence quenched under O2 while fluorescence is unaffected. The use of blue-fluorescent coumarins results in good signal resolution between fluorescence and phosphorescence. Moreover, the sensitivity and dynamic range, measured with Stern-Volmer analysis, can be tuned two orders of magnitude by virtue of our ability to synthetically control the triplet excited-state ordering. The complex with cyclometalated iridium 3MLCT phosphorescence operates under hyperoxic conditions, whereas the two complexes with coumarin-centered phosphorescence are sensitive to very low levels of O2 and function as hypoxic sensors.

15.
J Phys Chem Lett ; 13(28): 6447-6454, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35816284

RESUMO

Lead-free highly luminescent CsCu2I3 perovskite has attracted much attention recently, but agreements on basic optical properties have remained unsettled. By correlating X-ray diffraction with the photoluminescence (PL) of CsCu2I3 single-crystal wires, we first show that blue PL at 420 nm originates from CuI. We then exclude defect states as a source for the broadband emission centered at 570 nm from the lack of defect absorption, PL under sub-bandgap photoexcitation, observations of a linear dependence of PL intensity on excitation laser power, and a strong spectral blueshift under mild hydrostatic pressure. Finally, using a model of the self-trapped exciton and the associated coordinate configuration diagram, we explain pressure evolutions of PL energy, intensity, and lifetime. Single-crystal wires also enable us to obtain polarization-dependent Raman spectra down to 10 cm-1 and confirm their respective ambient crystal structure of orthorhombic Cmcm and phase transition to Pbnm at ∼5 GPa.

16.
Science ; 377(6604): 433-436, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35862517

RESUMO

Semiconducting cubic boron arsenide (c-BAs) has been predicted to have carrier mobility of 1400 square centimeters per volt-second for electrons and 2100 square centimeters per volt-second for holes at room temperature. Using pump-probe transient reflectivity microscopy, we monitored the diffusion of photoexcited carriers in single-crystal c-BAs to obtain their mobility. With near-bandgap 600-nanometer pump pulses, we found a high ambipolar mobility of 1550 ± 120 square centimeters per volt-second, in good agreement with theoretical prediction. Additional experiments with 400-nanometer pumps on the same spot revealed a mobility of >3000 square centimeters per volt-second, which we attribute to hot electrons. The observation of high carrier mobility, in conjunction with high thermal conductivity, enables an enormous number of device applications for c-BAs in high-performance electronics and optoelectronics.

17.
J Zhejiang Univ Sci B ; 23(6): 461-480, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35686526

RESUMO

The negative effects of low temperature can readily induce a variety of diseases. We sought to understand the reasons why cold stress induces disease by studying the mechanisms of fine-tuning in macrophages following cold exposure. We found that cold stress triggers increased macrophage activation accompanied by metabolic reprogramming of aerobic glycolysis. The discovery, by genome-wide RNA sequencing, of defective mitochondria in mice macrophages following cold exposure indicated that mitochondrial defects may contribute to this process. In addition, changes in metabolism drive the differentiation of macrophages by affecting histone modifications. Finally, we showed that histone acetylation and lactylation are modulators of macrophage differentiation following cold exposure. Collectively, metabolism-related epigenetic modifications are essential for the differentiation of macrophages in cold-stressed mice, and the regulation of metabolism may be crucial for alleviating the harm induced by cold stress.


Assuntos
Resposta ao Choque Frio , Epigênese Genética , Acetilação , Animais , Macrófagos/metabolismo , Camundongos , Mitocôndrias/metabolismo
18.
Adv Mater ; 34(21): e2201774, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35363922

RESUMO

Achieving efficient and durable nonprecious hydrogen evolution reaction (HER) catalysts for scaling up alkaline water/seawater electrolysis is desirable but remains a significant challenge. Here, a heterogeneous Ni-MoN catalyst consisting of Ni and MoN nanoparticles on amorphous MoN nanorods that can sustain large-current-density HER with outstanding performance is demonstrated. The hierarchical nanorod-nanoparticle structure, along with a large surface area and multidimensional boundaries/defects endows the catalyst with abundant active sites. The hydrophilic surface helps to achieve accelerated gas-release capabilities and is effective in preventing catalyst degradation during water electrolysis. Theoretical calculations further prove that the combination of Ni and MoN effectively modulates the electron redistribution at their interface and promotes the sluggish water-dissociation kinetics at the Mo sites. Consequently, this Ni-MoN catalyst requires low overpotentials of 61 and 136 mV to drive current densities of 100 and 1000 mA cm-2 , respectively, in 1 m KOH and remains stable during operation for 200 h at a constant current density of 100 or 500 mA cm-2 . This good HER catalyst also works well in alkaline seawater electrolyte and shows outstanding performance toward overall seawater electrolysis with ultralow cell voltages.

19.
Small ; 18(11): e2105009, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35060296

RESUMO

The integration of highly luminescent CsPbBr3 quantum dots on nanowire waveguides has enormous potential applications in nanophotonics, optical sensing, and quantum communications. On the other hand, CsPb2 Br5 nanowires have also attracted a lot of attention due to their unique water stability and controversial luminescent property. Here, the growth of CsPbBr3 nanocrystals on CsPb2 Br5 nanowires is reported first by simply immersing CsPbBr3 powder into pure water, CsPbBr3- γ Xγ (X = Cl, I) nanocrystals on CsPb2 Br5 -γ Xγ nanowires are then synthesized for tunable light sources. Systematic structure and morphology studies, including in situ monitoring, reveal that CsPbBr3 powder is first converted to CsPb2 Br5 microplatelets in water, followed by morphological transformation from CsPb2 Br5 microplatelets to nanowires, which is a kinetic dissolution-recrystallization process controlled by electrolytic dissociation and supersaturation of CsPb2 Br5 . CsPbBr3 nanocrystals are spontaneously formed on CsPb2 Br5 nanowires when nanowires are collected from the aqueous solution. Raman spectroscopy, combined photoluminescence, and SEM imaging confirm that the bright emission originates from CsPbBr3 -γ Xγ nanocrystals while CsPb2 Br5 -γ Xγ nanowires are transparent waveguides. The intimate integration of nanoscale light sources with a nanowire waveguide is demonstrated through the observation of the wave guiding of light from nanocrystals and Fabry-Perot interference modes of the nanowire cavity.

20.
J Hazard Mater ; 427: 127895, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34844806

RESUMO

Despite growing attention to environmental pollution by microplastics (MP), the effects of MP aging on bacterial horizontal gene transfer (HGT) have not been systematically investigated. Here, we used UV-aged polystyrene microplastics (PS-MPs) to investigate how aging affects antibiotic resistance genes (ARGs) transfer efficiency from various ARG vectors to recipient bacteria. The adsorption capacity of MP20 (20-day UV-aged PS-MPs) towards E. coli (harboring plasmid-borne blaTEM-1), plasmid pET29 (harboring blaNDM-1) and phage lambda (carrying the aphA1 ARG) increased by 6.6-, 5.2- and 8.3-fold, respectively, relative to pristine PS-MPs (MP0), due to increased specific surface area and affinity for these ARG vectors. Moreover, MP20 released more organic compounds (TOC 1.6 mg/g-MP20, versus 0.2 mg/g-MP0 in 4 h) -possibly depolymerization byproducts (verified by GC-MS), which induced intracellular ROS generation, increased cell permeability and upregulated HGT associated genes. Accordingly, MP20 enhanced ARG transfer frequency from E. coli, plasmid pET29 and phage lambda (relative to MP0) by 1.3-, 4.7- and 3.5-fold, respectively. The Bliss independence model infers that higher bacterial adsorption and exposure to chemicals released during MP aging synergistically enhanced ARG transfer. This underscores the need to assess the significance of this overlooked phenomenon to the environmental dissemination of antibiotic resistance and other HGT processes.


Assuntos
Microplásticos , Plásticos , Adsorção , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Escherichia coli/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...