Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38138410

RESUMO

This paper studies the radial alternating material phononic crystal (RAM-PnC). By simulating the band gap structure of the phononic crystal, a complete acoustic band gap was verified at the resonant frequency of 175.14 MHz, which can prevent the propagation of elastic waves in a specific direction. The proposed alternately arranged radial phononic crystal structure is applied to the thin-film piezoelectric-on-silicon (TPOS) MEMS resonator. The finite element simulation method increases the anchor quality factor (Qanchor) from 60,596 to 659,536,011 at the operating frequency of 175.14 MHz, which is about 10,000 times higher. The motion resistance of the RAM-PnC resonator is reduced from 156.25 Ω to 48.31 Ω compared with the traditional resonator. At the same time, the insertion loss of the RAM-PnC resonator is reduced by 1.1 dB compared with the traditional resonator.

2.
Micromachines (Basel) ; 14(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37630076

RESUMO

This paper proposes a reem-shaped phononic crystal for the performance enhancement of TPoS resonators. The proposed phononic crystal offers an ultra-wide acoustic band gap that prevents energy leakage through the supporting substrate upon its placement at the anchoring boundary, resulting in significant improvements in the resonator quality factor. Simulated results show reem-shape phononic crystals generate a band gap up to 175 MHz with a BG of 90% and enhance the anchor quality factor from 180,000 to 6,000,000 and the unloaded quality factor from 133,000 to 160,000, representing 33.3-fold and 1.2-fold improvements, respectively.

3.
Front Pharmacol ; 13: 1011008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238554

RESUMO

Background: Fibroblast growth factor 21 (FGF-21) is an evolutionarily conserved protein that plays multiple roles in metabolic regulation. Over the past two decades, numerous studies have deepened our understanding of its various functions and its pharmacological value. Nevertheless, most clinical trials have not achieved the desired results, which raises issues regarding its clinical value. In this bibliometric analysis, we evaluated the state of FGF-21 research over the last 20 years and identified important topics, achievements, and potential future directions. Methods: Publications related to FGF-21 were collected from the Web of Science Core Collection-Science Citation Index Expanded. HistCite, VOSviewer, and CiteSpace were used for bibliometric analysis and visualization, including the analysis of annual publications, leading countries, active institutions and authors, core journals, co-cited references, and keywords. Results: Altogether, 2,490 publications related to FGF-21 were obtained. A total of 12,872 authors from 2,628 institutions in 77 countries or regions reported studies on FGF-21. The United States of America was the most influential country in FGF-21 research. Alexei Kharitonenkov, Steven A. Kliewer, and David J. Mangelsdorf were the most influential scholars, and endocrinology journals had a core status in the field. The physiological roles, clinical translation, and FGF-21-based drug development were the main topics of research, and future studies may concentrate on the central effects of FGF-21, FGF-21-based drug development, and the effects of FGF-21 on non-metabolic diseases. Conclusion: The peripheral metabolic effects of FGF-21, FGF-21-based drug development, and translational research on metabolic diseases are the three major topics in FGF-21 research, whereas the central metabolic effects of FGF-21 and the effects of FGF-21 on metabolic diseases are the emerging trends and may become the following hot topics in FGF-21 research.

4.
IEEE Trans Ultrason Ferroelectr Freq Control ; 69(11): 3203-3210, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36074882

RESUMO

This article describes the first-order perturbation analysis of nonlinear responses in surface acoustic wave (SAW) resonators on the LiTaO3/SiO2/Si structure, where bulk wave radiation is negligible near the main resonance while the longitudinal resonances are not. The coupling-of-modes (COMs) theory is employed as the platform for both the linear and nonlinear response analyses. Stress and dielectric flux are assumed to be generated by nonlinear mixture of linear strain and electric fields proportional to the SAW displacement and applied voltage, respectively, and they are newly introduced to the extended COM equations as excitation sources. The simulated third harmonic (H3) responses agree well with the experimental ones including that caused by longitudinal resonances, and effectiveness of the present method is demonstrated. Furthermore, this theory is applied to the infinitely long interdigital transducer (IDT) to highlight the impact of longitudinal resonances.

5.
Front Cardiovasc Med ; 9: 908040, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903671

RESUMO

Background: Uremic cardiomyopathy is commonly presented in chronic kidney disease (CKD), and it severely affects the prognosis of patients with CKD. In the past few decades, the investigation of uremic cardiomyopathy has developed rapidly. However, no report has summarized the situation of uremic cardiomyopathy research to date. This study aimed to evaluate the state of uremic cardiomyopathy research in the last 30 years and identify important topics and achievements, as well as emerging trends through bibliometric analysis. Materials and Methods: Publications related to uremic cardiomyopathy were collected from Science Citation Index Expanded. HistCite, VOSviewer, CiteSpace, and the Bibliometrix Package were used for bibliometric analysis and visualization, including the analysis of the overall distribution of the annual publication, leading countries, and active institutions and authors, core journals, co-cited references, and keywords. Results: A total of 2,403 studies related to uremic cardiomyopathy were obtained, and progress related to uremic cardiomyopathy was slower in past 3 years. A total of 10,077 authors from 2,697 institutions in 89 countries or regions reported investigations on uremic cardiomyopathy. The United States of America was the most productive and the most cited country. Myles Wolf, Joseph I Shapiro, and Carmine Zoccali published most articles in uremic cardiomyopathy, and journals in nephrology possessed core status in the field. Phosphate metabolism was the hotspot in uremic cardiomyopathy research in recent years, and future progress may concentrate on phosphate metabolism, endogenous natriuretic factors, and novel biomarkers. Conclusion: The United States of America and European countries played central roles in uremic cardiomyopathy research, while Chinese scholars should be more involved in this field. Global publications on uremic cardiomyopathy have entered platform stage, and the fibroblast growth factor-23-klotho axis remained a hotspot in this field. Endogenous natriuretic factors and novel biomarkers may be potential directions in future investigations.

6.
Trends Endocrinol Metab ; 33(9): 601-613, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35872067

RESUMO

Irisin is a muscle-secreted hormone that is generated by cleavage of membrane protein FNDC-5 (fibronectin type III domain-containing protein 5). Irisin is considered to be a mediator of exercise-induced metabolic improvements, such as browning of white adipose tissue, and is known to alleviate several chronic non-metabolic diseases. Thus, irisin may be an ideal therapeutic target for metabolic and non-metabolic diseases. However, several controversies regarding irisin have hindered its clinical translation. We review the generation, regulation (especially in exercise), and metabolic as well as therapeutic effects of irisin on metabolic and non-metabolic diseases. Furthermore, we discuss controversies regarding irisin and highlight potential future research directions.


Assuntos
Fibronectinas , Doenças Metabólicas , Tecido Adiposo Branco/metabolismo , Exercício Físico/fisiologia , Fibronectinas/metabolismo , Humanos , Doenças Metabólicas/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo
8.
Metabolism ; 130: 155166, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35183545

RESUMO

Fibroblast growth factor 21 is an evolutionarily conserved factor that plays multiple important roles in metabolic homeostasis. During the past two decades, extensive investigations have improved our understanding of its delicate metabolic roles and identified its pharmacological potential to mitigate metabolic disorders. However, most clinical trials have failed to obtain the desired results, which raises issues regarding its clinical value. Fibroblast growth factor 21 is dynamically regulated by nutrients derived from food intake and hepatic/adipose release, which in turn act on the central nervous system, liver, and adipose tissues to influence food preference, hepatic glucose, and adipose fatty acid output. Based on this information, we propose that fibroblast growth factor 21 should not be considered merely an anti-hyperglycemia or anti-obesity factor, but rather a means of balancing of nutrient fluctuations to maintain an appropriate energy supply. Hence, the specific functions of fibroblast growth factor 21 in glycometabolism and lipometabolism depend on specific metabolic states, indicating that its pharmacological effects require further consideration.


Assuntos
Fígado Gorduroso , Obesidade , Fígado Gorduroso/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Obesidade/metabolismo
9.
Research (Wash D C) ; 2021: 9817062, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34870228

RESUMO

Recently, triboelectric nanogenerators (TENGs) have been promoted as an effective technique for ambient energy harvesting, given their large power density and high energy conversion efficiency. However, traditional TENGs based on the combination of triboelectrification effect and electrostatic induction have proven susceptible to environmental influence, which intensively restricts their application range. Herein, a new coupling mechanism based on electrostatic induction and ion conduction is proposed to construct flexible stable output performance TENGs (SOP-TENGs). The calcium chloride doped-cellulose nanofibril (CaCl2-CNF) film made of natural carrots was successfully introduced to realize this coupling, resulting from its intrinsic properties as natural nanofibril hydrogel serving as both triboelectric layer and electrode. The coupling of two conductive mechanisms of SOP-TENG was comprehensively investigated through electrical measurements, including the effects of moisture content, relative humidity, and electrode size. In contrast to the conventional hydrogel ionotronic TENGs that require moisture as the carrier for ion transfer and use a hydrogel layer as the electrode, the use of a CaCl2-CNF film (i.e., ion-doped natural hydrogel layer) as a friction layer in the proposed SOP-TENG effectively realizes a superstable electrical output under varying moisture contents and relative humidity due to the compound transfer mechanism of ions and electrons. This new working principle based on the coupling of electrostatic induction and ion conduction opens a wider range of applications for the hydrogel ionotronic TENGs, as the superstable electrical output enables them to be more widely applied in various complex environments to supply energy for low-power electronic devices.

10.
ACS Appl Mater Interfaces ; 13(18): 21401-21410, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33942604

RESUMO

Wearable electronic devices have great potential in the fields of the Internet of Things (IoT), sports and entertainment, and healthcare, and they are essential in advancing the development of next-generation electronic information technology. However, conventional lithium batteries, which are currently the main power supply of wearable electronic devices, have some critical issues, such as frequent charging, environmental pollution, and no surface adaptability, which limit the further development of wearable electronic devices. To address these challenges, we present a flexible hybrid photothermoelectric generator (PTEG) with a simple structure composed of a thermoelectric generator (TEG) and a light-to-thermal conversion layer to simultaneously harvest thermal and radiation energies based on a single working mechanism. The mature mass-fabrication technology of screen printing was applied to successively prepare n-type (i.e., Bi2Te2.7Se0.3) and p-type (i.e., Sb2Te3) thermoelectric inks atop a polyimide substrate to form the TEG with a serpentine thermocouple chain, which was further covered by a light-to-thermal conversion layer to constitute the PTEG. The resulting PTEG with five pairs of thermocouples generated a direct-current output of 82.4 mV at a temperature difference of 50 °C and a direct-current output of 41.2 mV under 20 mW/cm2 infrared radiation. Meanwhile, the remarkable mechanical reliability and output stability were experimentally demonstrated through a systematic test, which indicated the feasibility and potential of the developed PTEG as a reliable power source. In addition, as desirable application prototypes, the fabricated PTEGs have been successfully demonstrated to harvest biothermal energy and infrared radiation to drive portable electronic devices (e.g., a calculator and a clock). Hybrid energy harvesting technology based on a simple structure may provide a new solution to current power supply issues of wearable electronic device.

11.
Metabolism ; 116: 154435, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33220250

RESUMO

Acute kidney injury is a global disease with high morbidity and mortality. Recent studies have revealed that the fibroblast growth factor-23-α-Klotho axis is closely related to chronic kidney disease, and has multiple biological functions beyond bone-mineral metabolism. However, although dysregulation of fibroblast growth factor-23-α-Klotho has been observed in acute kidney injury, the role of fibroblast growth factor-23-α-Klotho in the pathophysiology of acute kidney injury remains largely unknown. In this review, we describe recent findings regarding fibroblast growth factor-23-α-Klotho, which is mainly involved in inflammation, oxidative stress, and hemodynamic disorders. Further, based on these recent results, we put forth novel insights regarding the relationship between the fibroblast growth factor-23-α-Klotho axis and acute kidney injury, which may provide new therapeutic targets for treating acute kidney injury.


Assuntos
Injúria Renal Aguda/genética , Fatores de Crescimento de Fibroblastos/fisiologia , Glucuronidase/fisiologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Injúria Renal Aguda/terapia , Animais , Fator de Crescimento de Fibroblastos 23 , Humanos , Proteínas Klotho , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Transdução de Sinais/fisiologia
12.
ACS Appl Mater Interfaces ; 12(38): 42859-42867, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32856889

RESUMO

As emerging ambient energy harvesting technology, triboelectric nanogenerators (TENGs) have proven to be a robust power source and have demonstrated the unique ability to power micro-nano electronics autonomously to form self-powered devices. Although four working modes of TENGs have been developed to promote the feasibility of self-powered micro-nano systems, the relatively complicated structure composed of multilayer and movable components limits the practical applications of TENGs. Herein, we propose a single-layer triboelectric nanogenerator (SL-TENG) based on ion-doped natural nanofibrils. Compared with the simplest mode of currently existing TENGs, i.e., the single-electrode type, this novel single-electrode TENG further simplifies the configuration by the removal of the dielectric layer. The underlying mechanism of the proposed SL-TENG is comprehensively investigated through electrical measurements and the analysis of the effect of ion species at different concentrations. In contrast to conventional TENGs that require electrodes to realize charge transfer, it is revealed that the ions doped into natural nanofibrils effectively realize charge transfer due to the separation and migration of cations and anions. This new working principle based on the combination of electrons and ions enables TENGs to show greater potential for applications since the ultrasimple single-layer configuration enables them to be more easily integrated with other electronic components; additionally, the whole device of the proposed SL-TENG is biodegradable because the natural nanofibrils are completely extracted from carrots.

13.
J Am Soc Nephrol ; 31(7): 1423-1434, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32527977

RESUMO

Cardiac hypertrophy is a common feature in patients with CKD. Recent studies revealed that two phosphate regulators, fibroblast growth factor-23 and α-Klotho, are highly involved in the pathophysiologic process of CKD-induced cardiac hypertrophy. With decreasing renal function, elevated fibroblast growth factor-23 and decreased α-Klotho may contribute to cardiac hypertrophy by targeting the heart directly or by inducing systemic changes, such as vascular injury, hemodynamic disorders, and inflammation. However, several studies have demonstrated that disturbances in the fibroblast growth factor-23/α-Klotho axis do not lead to cardiac hypertrophy. In this review, we describe the cardiac effects of the fibroblast growth factor-23/α-Klotho axis and summarize recent progress in this field. In addition, we present not only the main controversies in this field but also provide possible directions to resolve these disputes.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Glucuronidase/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Insuficiência Renal Crônica/metabolismo , Uremia/metabolismo , Animais , Endotélio Vascular/fisiopatologia , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Glucuronidase/sangue , Humanos , Hipertrofia Ventricular Esquerda/etiologia , Proteínas Klotho , Comunicação Parácrina , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Uremia/complicações
14.
Micromachines (Basel) ; 11(2)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973144

RESUMO

As one of the core components of MEMS (i.e., micro-electro-mechanical systems), thin-film piezoelectric-on-silicon (TPoS) resonators experienced a blooming development in the past decades due to unique features such as a remarkable capability of integration for attractive applications of system-on-chip integrated timing references. However, the parasitic capacitive feedthrough poses a great challenge to electrical detection of resonance in a microscale silicon-based mechanical resonator. Herein, a fully-differential configuration of a TPoS MEMS resonator based on a novel structural design of dual interdigital electrodes is proposed to eliminate the negative effect of feedthrough. The fundamental principle of feedthrough suppression was comprehensively investigated by using FEA (i.e., finite-element analysis) modeling and electrical measurements of fabricated devices. It was shown that with the help of fully-differential configuration, the key parameter of SBR (i.e., signal-to-background ratio) was significantly enhanced by greatly suppressing the in-phase signal. The S-parameter measurement results further verified the effectiveness of this novel feedthrough suppression strategy, and the insertion loss and SBR of proposed TPoS resonators were improved to 4.27 dB and 42.47 dB, respectively.

15.
Micromachines (Basel) ; 10(9)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546943

RESUMO

Phononic crystals (PnC) are a remarkable example of acoustic metamaterials with superior wave attenuation mechanisms for piezoelectric micro-electro-mechanical systems (MEMS) resonators to reduce the energy dissipation. Herein, a spider web-like PnC (SW-PnC) is proposed to sufficiently isolate the wave vibration. Finite-element analysis is performed to gain insight into the transmission property of finite PnC, and band characteristics by infinite periods. In comparison with the circle hole PnC at a similar bandgap, due to its already very lightweight PnC structure compared with previously reported PnCs, the proposed PnC offers a significantly lighter weight, smaller lattice constant, and greater energy leakage inhibition. More specifically, the resonator with the SW-PnC plate as the anchoring substrate exhibited a quality factor as high as 66569.7 at 75.82 MHz.

16.
Micromachines (Basel) ; 10(5)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052249

RESUMO

This paper presents a novel approach of annular concentric split rings microelectromechanical resonators with tether configuration to reduce anchor loss and gives very high-quality factor (Q) 2.97 Million based on FEA (Finite Element Analysis) simulation. The operating frequencies of these resonators are 188.55 MHz to 188.62 MHz. When the proposed SR (square rectangle) hole shaped one dimensional phononic crystal (1D PnC), and two dimensional phononic crystal (2D PnC) structure consist of very wide and complete band gaps is applied to novel design rings MEMS resonators, the quality factor (Q) further improved to 19.7 Million and 1750 Million, respectively, by using the finite element method. It is also observed that band gaps become closer by reducing the value of filling fraction, and proposed SR PnC gives extensive peak attenuation. Moreover, harmonic response of ring resonator is verified by the perfect match layers (PML) technique surrounded by resonators with varying width 1.5λ, and 3λ effectively reduce the vibration displacement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...