Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4252, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762594

RESUMO

Multiferroic materials, which simultaneously exhibit ferroelectricity and magnetism, have attracted substantial attention due to their fascinating physical properties and potential technological applications. With the trends towards device miniaturization, there is an increasing demand for the persistence of multiferroicity in single-layer materials at elevated temperatures. Here, we report high-temperature multiferroicity in single-layer CuCrSe2, which hosts room-temperature ferroelectricity and 120 K ferromagnetism. Notably, the ferromagnetic coupling in single-layer CuCrSe2 is enhanced by the ferroelectricity-induced orbital shift of Cr atoms, which is distinct from both types I and II multiferroicity. These findings are supported by a combination of second-harmonic generation, piezo-response force microscopy, scanning transmission electron microscopy, magnetic, and Hall measurements. Our research provides not only an exemplary platform for delving into intrinsic magnetoelectric interactions at the single-layer limit but also sheds light on potential development of electronic and spintronic devices utilizing two-dimensional multiferroics.

2.
Adv Mater ; : e2313511, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597395

RESUMO

Moiré superlattices, consisting of rotationally aligned 2D atomically thin layers, provide a highly novel platform for the study of correlated quantum phenomena. However, reliable and efficient construction of moiré superlattices is challenging because of difficulties to accurately angle-align small exfoliated 2D layers and the need to shun wet-transfer processes. Here, efficient and precise construction of various moiré superlattices is demonstrated by picking up and stacking large-area 2D mono- or few-layer crystals with predetermined crystal axes, made possible by a gold-template-assisted mechanical exfoliation method. The exfoliated 2D layers are semiconductors, superconductors, or magnets and their high quality is confirmed by photoluminescence and Raman spectra and by electrical transport measurements of fabricated field-effect transistors and Hall devices. Twisted homobilayers with angle-twisting accuracy of ≈0.3°, twisted heterobilayers with sub-degree angle-alignment accuracy, and multilayer superlattices are precisely constructed and characterized by their moiré patterns, interlayer excitons, and second harmonic generation. The present study paves the way for exploring emergent phenomena in moiré superlattices.

3.
Adv Mater ; : e2403154, 2024 Apr 17.
Artigo em Holandês | MEDLINE | ID: mdl-38631700

RESUMO

Van der Waals (vdW) ferromagnetic materials have emerged as a promising platform for the development of 2D spintronic devices. However, studies to date are restricted to vdW ferromagnetic materials with low Curie temperature (Tc) and small magnetic anisotropy. Here, a chemical vapor transport method is developed to synthesize a high-quality room-temperature ferromagnet, Fe3GaTe2 (c-Fe3GaTe2), which boasts a high Tc = 356 K and large perpendicular magnetic anisotropy. Due to the planar symmetry breaking, an unconventional room-temperature antisymmetric magnetoresistance (MR) is first observed in c-Fe3GaTe2 devices with step features, manifesting as three distinctive states of high, intermediate, and low resistance with the sweeping magnetic field. Moreover, the modulation of the antisymmetric MR is demonstrated by controlling the height of the surface steps. This work provides new routes to achieve magnetic random storage and logic devices by utilizing the room-temperature thickness-controlled antisymmetric MR and further design room-temperature 2D spintronic devices based on the vdW ferromagnet c-Fe3GaTe2.

4.
Adv Mater ; : e2311652, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502781

RESUMO

The explosive growth of massive-data storage and the demand for ultrafast data processing require innovative memory devices with exceptional performance. 2D materials and their van der Waal heterostructures with atomically sharp interfaces hold great promise for innovations in memory devices. Here, this work presents non-volatile, floating-gate memory devices with all functional layers made of 2D materials, achieving ultrafast programming/erasing speeds (20 ns), high extinction ratios (up to 108), and multi-bit storage capability. These devices also exhibit long-term data retention exceeding 10 years, facilitated by a high gate-coupling ratio (GCR) and atomically sharp interfaces between functional layers. Additionally, this work demonstrates the realization of an "OR" logic gate on a single-device unit by synergistic electrical and optical operations. The present results provide a solid foundation for next-generation ultrahigh-speed, ultralong lifespan, non-volatile memory devices, with a potential for scale-up manufacturing and flexible electronics applications.

5.
Nat Mater ; 23(3): 331-338, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37537355

RESUMO

The properties of two-dimensional (2D) van der Waals materials can be tuned through nanostructuring or controlled layer stacking, where interlayer hybridization induces exotic electronic states and transport phenomena. Here we describe a viable approach and underlying mechanism for the assisted self-assembly of twisted layer graphene. The process, which can be implemented in standard chemical vapour deposition growth, is best described by analogy to origami and kirigami with paper. It involves the controlled induction of wrinkle formation in single-layer graphene with subsequent wrinkle folding, tearing and re-growth. Inherent to the process is the formation of intertwined graphene spirals and conversion of the chiral angle of 1D wrinkles into a 2D twist angle of a 3D superlattice. The approach can be extended to other foldable 2D materials and facilitates the production of miniaturized electronic components, including capacitors, resistors, inductors and superconductors.

6.
Psychol Res Behav Manag ; 16: 3259-3267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37605755

RESUMO

Background: The role of fear-avoidance beliefs (FAB) in patients with chronic pain has been widely confirmed. However, few conclusions have been drawn about its role in postoperative patients. Objective: To explore the characteristics of FAB in postoperative patients after lung surgery as well as the effect of threat learning on FAB. Methods: Between May and September 2022, this study recruited 150 participants who had undergone thoracoscopic surgery. Variables such as age, gender, education, chronic pain, fear of pain, surgery method, pain intensity, FAB, cough, ambulation and threat learning were collected and subjected to correlation analysis and stepwise regression. Results: The correlation analysis revealed that FAB was associated with age (r = -0.183, p < 0.05), gender (r = -0.256, p < 0.01), and preoperative FOP-9 (r = 0.400, p < 0.01). Postoperative variables such as pain intensity (r = 0.574, p < 0.01), initiation day of ambulation (r = 0.648, p < 0.01), total numbers of ambulation (r = -0.665, p < 0.01), and cough performance (r = -0.688, p < 0.01) were correlated with FAB. Furthermore, FAB was highly correlated with indicators of threat learning: direct (r = 0.556, p < 0.01), observation (r = 0.655, p < 0.01), and instruction (r = 0.671, p < 0.01). The highest variance explanation model of stepwise regression which explained 52.8% of the variance including instruction (B=1.751; p<0.01), direct (B=1.245; p<0.01), observation (B=0.768; p<0.01), age (B=-0.085; p<0.01), and surgery method (B=1.321; p<0.05). Conclusion: Patients commonly experience FAB after lung surgery, which can directly affect their recovery behaviors such as ambulation and active coughing. The formation of FAB is influenced by threat learning, which suggests that controlling threat learning is important in preventing postoperative FAB.

7.
Sci Bull (Beijing) ; 68(16): 1757-1763, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37507260

RESUMO

The study of phonon polaritons in van der Waals materials at the nanoscale has gained significant attention in recent years due to its potential applications in nanophotonics. The unique properties of these materials, such as their ability to support sub-diffraction imaging, sensing, and hyperlenses, have made them a promising avenue for the development of new techniques in the field. Despite these advancements, there still exists a challenge in achieving dynamically reversible manipulation of phonon polaritons in these materials due to their insulating properties. In this study, we present experimental results on the reversible manipulation of anisotropic phonon polaritons in α-MoO3 on top of a VO2 film, a phase-change material known for its dramatic changes in dielectric properties between its insulating and metallic states. Our findings demonstrate that the engineered VO2 film enables a switch in the propagation of polaritons in the mid-infrared region by modifying the dielectric properties of the film through temperature changes. Our results represent a promising approach to effectively control the flow of light energy at the nanoscale and offer the potential for the design and fabrication of integrated, flat sub-diffraction polaritonic devices. This study adds to the growing body of work in the field of nanophotonics and highlights the importance of considering phase-change materials for the development of new techniques in this field.

8.
Polymers (Basel) ; 15(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37242874

RESUMO

High-performance chrome-free leather production is currently one of the most concerning needs to warrant the sustainable development of the leather industry due to the serious chrome pollution. Driven by these research challenges, this work explores using biobased polymeric dyes (BPDs) based on dialdehyde starch and reactive small-molecule dye (reactive red 180, RD-180) as novel dyeing agents for leather tanned using a chrome-free, biomass-derived aldehyde tanning agent (BAT). FTIR, 1H NMR, XPS, and UV-visible spectrometry analyses indicated that a Schiff base structure was generated between the aldehyde group of dialdehyde starch (DST) and the amino group of RD-180, resulting in the successful load of RD-180 on DST to produce BPD. The BPD could first penetrate the BAT-tanned leather efficiently and then be deposited on the leather matrix, thus exhibiting a high uptake ratio. Compared with the crust leathers prepared using a conventional anionic dye (CAD), dyeing, and RD-180 dyeing, the BPD-dyed crust leather not only had better coloring uniformity and fastness but it also showed a higher tensile strength, elongation at break, and fullness. These data suggest that BPD has the potential to be used as a novel sustainable polymeric dye for the high-performance dyeing of organically tanned chrome-free leather, which is paramount to ensuring and promoting the sustainable development of the leather industry.

9.
Adv Mater ; 35(32): e2301067, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37204321

RESUMO

The development of electrically ultrafast-programmable semiconductor homojunctions can lead to transformative multifunctional electronic devices. However, silicon-based homojunctions are not programmable so that alternative materials need to be explored. Here 2D, multi-functional, lateral homojunctions made of van der Waals heterostructures with a semi-floating-gate configuration on a p++ Si substrate feature atomically sharp interfaces and can be electrostatically programmed in nanoseconds, more than seven orders of magnitude faster than other 2D-based homojunctions. By applying voltage pulses with different polarities, lateral p-n, n+ -n and other types of homojunctions can be formed, varied, and reversed. The p-n homojunctions possess a high rectification ratio of up to ≈105 and can be dynamically switched between four distinct conduction states with the current spanning over nine orders of magnitude, enabling them to function as logic rectifiers, memories, and multi-valued logic inverters. Built on a p++ Si substrate, which acts as the control gate, the devices are compatible with Si technology.

10.
ACS Nano ; 17(3): 2450-2459, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36716185

RESUMO

Self-intercalation of native magnetic atoms within the van der Waals (vdW) gap of layered two-dimensional (2D) materials provides a degree of freedom to manipulate magnetism in low-dimensional systems. Among various vdW magnets, the vanadium telluride is an interesting system to explore the interlayer order-disorder transition of magnetic impurities due to its flexibility in taking nonstoichiometric compositions. In this work, we combine high-resolution scanning transmission electron microscopy (STEM) analysis with density functional theory (DFT) calculations and magnetometry measurements, to unveil the local atomic structure and magnetic behavior of V-rich V1+xTe2 nanoplates with embedded V3Te4 nanoclusters grown by chemical vapor deposition (CVD). The segregation of V intercalations locally stabilizes the self-intercalated V3Te4 magnetic phase, which possesses a distorted 1T'-like monoclinic structure. This phase transition is controlled by the electron doping from the intercalant V ions. The magnetic hysteresis loops show that the nanoplates exhibit superparamagnetism, while the temperature-dependent magnetization curves evidence a collective superspin-glass magnetic behavior of the nanoclusters at low temperature. Using four-dimensional (4D) STEM diffraction imaging, we reveal the formation of collective diffuse magnetic domain structures within the sample under the high magnetic fields inside the electron microscope. Our results shed light on the studies of dilute magnetism at the 2D limit and on strategies for the manipulation of magnetism for spintronic applications.

11.
Nano Lett ; 22(24): 10208-10215, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36343338

RESUMO

α-MoO3, a natural van der Waals (vdWs) material, has received wide attention in nano-optics for supporting highly confined anisotropic phonon polaritons (PhPs) from the mid-infrared to the terahertz region, which opens a new route for manipulating light at the nanoscale. However, its optical loss hinders light manipulation with high efficiency. This work demonstrates that the isotope-enriched Mo element enables ultralow-loss PhPs in the α-MoO3. Raman spectra reveal that the isotope-enriched Mo element in the α-MoO3 allows different optical phonon frequencies by efficiently altering the Reststrahlen band's dispersion. The Mo isotope-enriched α-MoO3 significantly reduces the PhPs' optical loss due to efficient optical coherence, which enhances the propagation length revealed by infrared nanoimaging. These findings suggest that the isotope-enriched α-MoO3 is a new feasible 2D material with an ultralow optical loss for possible high-performance integrated photonics and quantum optics devices.

12.
Carbohydr Polym ; 295: 119838, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35989032

RESUMO

Dialdehyde sodium alginate (DSA) is an eco-crosslinker attracting extensive interest while undergoing limited large-scale applications. Herein, we employed DSA to react with dicyandiamide (DA) for engineering a biomass-derived retanning agent (BDR) towards addressing the long-term toxicity of residual formaldehyde (FA) in leather caused by amino resins. Results confirmed that BDR reserved the structural features of DSA by grafting DA onto DSA molecules. Owing to the suitable molecular weight (main components, 1424-1462 g/mol) and abundant oxygen-containing groups of BDR endowed by DSA, BDR-treated chrome-free leather showed higher hydrothermal stability (82.4 °C), thickening ratio (13.93 %), mechanical strengths (17.2 N/mm2 for tensile strength and 120 N/mm for tear strength), and fullness compared with industrial dicyandiamide-FA-resin (DFR)-treated leather. The FA-free feature of DSA led to BDR-treated leather containing no FA, while FA in DFR-treated leather reached 591.5 mg/kg. This work provided new insights into broadening the large-scale application scopes of DSA.


Assuntos
Alginatos , Curtume , Formaldeído , Guanidinas , Resistência à Tração
13.
Pain Res Manag ; 2022: 2201501, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757293

RESUMO

Background: Fear of pain (FOP) has been recognized as an influential moderator and determinant of the perception and disability of chronic pain. However, studies on FOP in postoperative acute pain are few and inconsistent. Objective: To explore whether FOP is related to pain intensity after thoracic surgery and provide a reference for FOP study in postoperative pain. Methods: From February to March 2022, 89 patients completed Chinese Version of Fear of Pain-9 Items (FOP-9), Chinese version of the Brief Pain Inventory (BPI, including least, worst, and average pain) and Simplified Chinese version of the Pain Catastrophizing Scale (PCS). Correlation analyses and mediation analyses were used for exploring the relationship between factors. Results: Mediation analyses showed that the total effects of FOP-9 on BPI all were significant (least pain: effect = 0.085, p=0.013, 95% CI = 0.019∼0.151; worst pain: effect = 0.116, p=0.004, 95% CI = 0.037∼0.196; average pain: effect = 0.102, p=0.005, 95% CI = 0.031∼0.174) indicating that FOP-9 was a predictor to BPI. The 95% bias-corrected bootstrap confidence interval of estimate of indirect effect between FOP-9 and least pain/average pain through PCS was -0.036∼0.024 and -0.003∼0.069 (all contain zero), which indicated that PCS is not a mediator between FOP-9 and least pain/average pain. However, the estimate of indirect effect between FOP-9 and worst pain through PCS were 0.048 (95% CI = 0.095∼0.088), and direct effect was not statistically significant (95% CI = -0.017∼0.153), indicating that PCS acted as a complete intermediary between FOP-9 and worst pain. FOP-9 and PCS showed significant positive prediction effect on worst pain. Conclusions: Both trait FOP and state FOP were associated with higher postoperative pain reports after thoracic surgery. Trait FOP influences postoperative pain through the mediating effect of state FOP.


Assuntos
Medo , Dor Pós-Operatória , Catastrofização , Humanos , Medição da Dor , Dor Pós-Operatória/diagnóstico , Dor Pós-Operatória/etiologia , Transtornos Fóbicos , Inquéritos e Questionários , Toracoscopia
14.
Artigo em Inglês | MEDLINE | ID: mdl-35769162

RESUMO

Andai therapy is a traditional therapy combining body, mind, and language with Mongolian characteristics. In the form of singing and dancing, it is widely popular among people of all ages in Mongolian areas of Inner Mongolia. According to Mongolian medicine, Heyi is one of the three elements of human body, and it can maintain life activities, promote blood circulation, and improve the functions of the sensory and mental consciousness. Andai therapy stimulates the whole body nerves and Heyi through music and dance, improves Heyi and blood operation, strengthens physique, improves immunity, effectively promotes physical and mental health, and plays a role in preventing and treating diseases. Objective. In this study, gas chromatography-mass spectrometry (GC-MS) was used to explore the mechanism of Andai therapy, so as to provide a new research direction for taking targeted prevention and treatment measures for diseases. Methods. Using gas chromatography-mass spectrometry (GC-MS) on all its cases baseline plasma to the targeted metabonomics testing, the differential metabolites of the experimental group (receiving Andai therapy) and control group (without receiving Andai therapy), analysis-related metabolite function, and screening of metabolites and related pathways through adjusting mechanism to explore the related factors are compared, to study the mechanism of the influence of Mongolian medical Andai therapy on the metabolism of different healthy people. Results. The differences in metabolic numbers between the experimental group and the control group are 114, such as cyclohexylamine chlorinated acid, 2,4-2 aminobutyric acid bitter almond alcohol, l-methyl inosine, 2-picolinate, and 2-hydroxy-2-glutaric acid metabolite content of the control group that are significantly higher than the experimental group, experimental group's other substance content is significantly higher than that of the control group, and two groups' metabolite content was obviously different. The number of differential metabolites between the female experimental group and the female control group was 119, and the number of differential metabolites between the male experimental group and the male control group was 48.

15.
J Colloid Interface Sci ; 623: 552-560, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35598484

RESUMO

Sluggish kinetics of the oxygen evolution reaction during the water splitting requires high-performance electrocatalysts with low cost and good stability. Metal-organic frameworks (MOFs) have attracted much attention as electrocatalysts owing to their unique properties. To improve their electrocatalytic activity and stability, we report a selenylation method to modulate the morphology and interfaces by forming flower-like MOF-selenide nanocomposites. The optimal sample exhibits high activity with an overpotential of 260 mV at 10 mA cm-2, much better than commercial RuO2 and the control samples. Moreover, the optimal sample has the lowest Tafel slope of 54.3 mV dec-1, indicating the fast reaction kinetics, which can be attributed to the lower charge-transfer resistance and high intrinsic activity. Chronoamperometry shows that the optimal sample can maintain the current density for 60 h at 10 mA cm-2 after the initial surface reconstruction, demonstrating good stability. This study provides a new perspective on the development of highly efficient electrocatalysts based on polymetallic MOFs.

16.
RSC Adv ; 12(5): 2684-2692, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35425282

RESUMO

Sensors are routinely developed for specific applications, but multipurpose sensors are challenging, due to stability and poor functional design. We report organic materials that operate in solution and gas phase. They show a strong response behaviour to at least three types of environmental changes: pH, amine and metal ion binding/detection. We have confirmed and validated our findings using various analytical and computational methods. We found that the changes in polarity of the solvent and pH not only red shift the tail of the absorption spectra, but also extend the peak optical absorption of these structures by up to 100 nm, with consequential effects on the optical gap and colour changes of the materials. Acid-base response has been studied by spectrophotometric titrations with trifluoroacetic acid (TFA) and triethyl amine (TEA). The experiments show excellent reversibility with greater sensitivity to base than acid for all compounds. Analysis into metal sensing using Zn(ii) and Cu(ii) ions as analytes show that the materials can successfully bind the cations forming stable complexes. Moreover, a strong suppression of signal with copper gives an operative modality to detect the copper ion as low as 2.5 × 10-6 M. The formation of the metal complexes was also confirmed by growing crystals using a slow diffusion method; subsequent single crystal X-ray analysis reveals the ratio of ligand to metal to be 2 to 1. To test sensitivity towards various amine vapours, paper-based sensors have been fabricated. The sensors show a detection capability at 1 ppm of amine concentration. We have employed CIE L*a*b* colour space as the evaluation method, this provides numeric comparison of the samples from different series and allows comparison of small colour differences, which are generally undetectable by the human-eye. It shows that the CIE L*a*b* method can assess both sensitivity to a particular class of analytes and a specificity response to individual amines in this subclass offering an inexpensive and versatile methodology.

17.
Phys Chem Chem Phys ; 24(16): 9082-9117, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35383791

RESUMO

Over the past decades, construction of nanoscale electronic devices with novel functionalities based on low-dimensional structures, such as single molecules and two-dimensional (2D) materials, has been rapidly developed. To investigate their intrinsic properties for versatile functionalities of nanoscale electronic devices, it is crucial to precisely control the structures and understand the physical properties of low-dimensional structures at the single atomic level. In this review, we provide a comprehensive overview of the construction of nanoelectronic devices based on single molecules and 2D materials and the investigation of their physical properties. For single molecules, we focus on the construction of single-molecule devices, such as molecular motors and molecular switches, by precisely controlling their self-assembled structures on metal substrates and charge transport properties. For 2D materials, we emphasize their spin-related electrical transport properties for spintronic device applications and the role that interfaces among 2D semiconductors, contact electrodes, and dielectric substrates play in the electrical performance of electronic, optoelectronic, and memory devices. Finally, we discuss the future research direction in this field, where we can expect a scientific breakthrough.

18.
Comput Math Methods Med ; 2022: 5115089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198037

RESUMO

Studies have shown that the physical, psychological, and social problems of liver cancer patients are more serious than those of other cancer patients and their quality of life is significantly reduced. This may be related to the poor treatment effect of patients with advanced liver cancer. Patients often have adverse symptoms such as cancer pain, pleural effusion, and ascites, etc., which have a great impact on patients' psychology and recovery from illness. With the change of the medical model, it has become history to rely solely on drugs to care for patients with advanced liver cancer and comprehensive nursing intervention has become very important. Continuous nursing intervention focuses on individualized and full-hearted care, effectively alleviating patients' anxiety and fear and improving patients' environmental adaptability and psychological defense mechanisms. However, in the field of liver cancer, there is no detailed comparison between the efficacy of continuous nursing and traditional conventional nursing. This article applies the hidden Markov model, starts with medical data mining, and describes the process achieved by the application of this article and the analysis of the results obtained by the two nursing methods, which reflect the difference in curative effect evaluation, and it proves that continuous nursing has more advantages in the curative effect of patients with liver tumors.


Assuntos
Mineração de Dados/métodos , Neoplasias Hepáticas/enfermagem , Modelos de Enfermagem , Algoritmos , China , Biologia Computacional , Mineração de Dados/estatística & dados numéricos , Humanos , Cadeias de Markov
19.
Rev Sci Instrum ; 92(10): 103702, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717434

RESUMO

We report the design of a time-shared switching scheme, aiming to realize the manipulation and working modes (imaging mode and transport measurement mode) switching between multiple scanning tunneling microscope (STM) probes one by one with a shared STM control system (STM CS) and an electrical transport characterization system. This scheme comprises three types of switch units, switchable preamplifiers (SWPAs), high voltage amplifiers, and a main control unit. Together with the home-made software kit providing the graphical user interface, this scheme achieves a seamless switching process between different STM probes. Compared with the conventional scheme using multiple independent STM CSs, this scheme possesses more compatibility, flexibility, and expansibility for lower cost. The overall architecture and technique issues are discussed in detail. The performances of the system are demonstrated, including the millimeter scale moving range and atomic scale resolution of a single STM probe, safely approached multiple STM probes beyond the resolution of the optical microscope (1.1 µm), qualified STM imaging, and accurate electrical transport characterization. The combinational technique of imaging and transport characterization is also shown, which is supported by SWPA switches with ultra-high open circuit resistance (909 TΩ). These successful experiments prove the effectiveness and the usefulness of the scheme. In addition, the scheme can be easily upgraded with more different functions and numbers of probe arrays, thus opening a new way to build an extremely integrated and high throughput characterization platform.

20.
Nat Nanotechnol ; 16(8): 882-887, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33941919

RESUMO

The development of high-performance memory devices has played a key role in the innovation of modern electronics. Non-volatile memory devices have manifested high capacity and mechanical reliability as a mainstream technology; however, their performance has been hampered by low extinction ratio and slow operational speed. Despite substantial efforts to improve these characteristics, typical write times of hundreds of micro- or milliseconds remain a few orders of magnitude longer than that of their volatile counterparts. Here we demonstrate non-volatile, floating-gate memory devices based on van der Waals heterostructures with atomically sharp interfaces between different functional elements, achieving ultrahigh-speed programming/erasing operations in the range of nanoseconds with extinction ratio up to 1010. This enhanced performance enables new device capabilities such as multi-bit storage, thus opening up applications in the realm of modern nanoelectronics and offering future fabrication guidelines for device scale up.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...