Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(13): 8895-8903, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511265

RESUMO

Actin is one of the most abundant proteins in eukaryotic cells and is a key component of the cytoskeleton. A range of small molecules has emerged that interfere with actin dynamics by either binding to polymeric F-actin or monomeric G-actin to stabilize or destabilize filaments or prevent their formation and growth, respectively. Among these, the latrunculins, which bind to G-actin and affect polymerization, are widely used as tools to investigate actin-dependent cellular processes. Here, we report a photoswitchable version of latrunculin, termed opto-latrunculin (OptoLat), which binds to G-actin in a light-dependent fashion and affords optical control over actin polymerization. OptoLat can be activated with 390-490 nm pulsed light and rapidly relaxes to its inactive form in the dark. Light activated OptoLat induced depolymerization of F-actin networks in oligodendrocytes and budding yeast, as shown by fluorescence microscopy. Subcellular control of actin dynamics in human cancer cell lines was demonstrated via live cell imaging. Light-activated OptoLat also reduced microglia surveillance in organotypic mouse brain slices while ramification was not affected. Incubation in the dark did not alter the structural and functional integrity of the microglia. Together, our data demonstrate that OptoLat is a useful tool for the elucidation of G-actin dependent dynamic processes in cells and tissues.


Assuntos
Citoesqueleto de Actina , Actinas , Animais , Camundongos , Humanos , Actinas/química , Citoesqueleto de Actina/metabolismo , Citoesqueleto/metabolismo , Linhagem Celular , Microtúbulos/metabolismo
2.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37502978

RESUMO

Actin is one of the most abundant proteins in eukaryotic cells and a key component of the cytoskeleton. A range of small molecules have emerged that interfere with actin dynamics by either binding to polymeric F-actin or monomeric G-actin to stabilize or destabilize filaments or prevent their formation and growth, respectively. Amongst these, the latrunculins, which bind to G-actin and affect polymerization, are widely used as tools to investigate actin-dependent cellular processes. Here, we report a photoswitchable version of latrunculin, termed opto-latrunculin (OptoLat), which binds to G-actin in a light-dependent fashion and affords optical control over actin polymerization. OptoLat can be activated with 390 - 490 nm pulsed light and rapidly relaxes to the inactive form in the dark. Light activated OptoLat induced depolymerization of F-actin networks in oligodendrocytes and budding yeast, as shown by fluorescence microscopy. Subcellular control of actin dynamics in human cancer cell lines was demonstrated by live cell imaging. Light-activated OptoLat also reduced microglia surveillance in organotypic mouse brain slices while ramification was not affected. Incubation in the dark did not alter the structural and functional integrity of microglia. Together, our data demonstrate that OptoLat is a useful tool for the elucidation of G-actin dependent dynamic processes in cells and tissues.

3.
Proc Natl Acad Sci U S A ; 119(32): e2208938119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35930662

RESUMO

A unified synthetic route for the total syntheses of eribulin and a macrolactam analog of halichondrin B is described. The key to the success of the current synthetic approach includes the employment of our reverse approach for the construction of cyclic ether structural motifs and a modified intramolecular cyclization reaction between alkyl iodide and aldehyde functionalities to establish the all-carbon macrocyclic framework of eribulin. These syntheses, together with our previous work on the total syntheses of halichondrin B and norhalichondrin B, demonstrate and validate the powerful reverse approach in the construction of cyclic ether structural motifs. On the other hand, the unified synthetic strategy for the synthesis of the related macrolactam analog provides inspiration and opportunities in the halichondrin field and related polycyclic ether areas.


Assuntos
Éteres Cíclicos , Furanos , Cetonas , Macrolídeos , Éteres Cíclicos/síntese química , Furanos/síntese química , Cetonas/síntese química , Macrolídeos/síntese química
4.
Acc Chem Res ; 54(19): 3720-3733, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34549936

RESUMO

Total synthesis of natural products has been one of the most exciting and dynamic areas in synthetic organic chemistry. Nowadays, the major challenge in this field is not whether a given target of interest can be synthesized but how to make it with commendable efficiency and practicality. To meet this grand challenge, a wise way is to learn from Mother Nature who is recognized for her superb capability of forging complicated and sometimes beyond-imagination molecules in her own delicate way. Indeed, since Sir Robert Robinson published his groundbreaking synthesis of tropinone in 1917, biomimetic synthesis of natural products, a process of imitating nature's way to make molecules, has evolved into one of the most popular research directions in organic synthesis.Our group has been engaging in biomimetic synthesis of natural products in the past decade. During this time, we have come to realize that the successful implementation of a biomimetic synthesis entails the orchestrated combination of bioinspiration and rational design. On the one hand, we prefer to utilize some elegant bioinspired transformations (e.g., Diels-Alder dimerization, 6π-electrocyclization, and [2 + 2]-photocycloaddition) as the key steps of our synthesis, which enable rapid construction of the core skeletons of the chased targets with high efficiency; on the other hand, various powerful reactions (e.g., dyotropic rearrangement of ß-lactone, tandem aldol condensation/Grob fragmentation reaction, and organocatalytic asymmetric Mukaiyama-Michael addition) are rationally designed by us, which allow for facile access to the requisite precursors for attempting biomimetic transformations. In some cases, the proposed biomimetic transformation may fail to give a satisfactory result in practice, and thus we opt to develop creative tactics (e.g., hydrogen atom transfer-triggered vinyl cyclobutane ring opening/oxygen insertion/cyclization cascade) that can meet the challenge. Guided by this synthesis concept, we have achieved the total syntheses of multiple families of natural products of great importance in both chemistry and biology, representatives of which include xanthanolides, cytochalasans, and plakortin-type polyketides. Of note, most of these targets could be accessed in a concise, efficient, and scalable manner, which paves the way for further exploration of their biological functions and medicinal potential. Moreover, owing to their biomimetic nature, our syntheses provide valuable information for deciphering the underlying biosynthetic pathways of the chased targets, which could not be attained by other synthetic modes.


Assuntos
Produtos Biológicos/síntese química , Materiais Biomiméticos/síntese química , Produtos Biológicos/química , Materiais Biomiméticos/química
5.
J Am Chem Soc ; 143(24): 9267-9276, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34105959

RESUMO

A new strategy is described for the total synthesis of halichondrin B featuring reversal of the sequential construction of a number of its cyclic ethers from the classical approach by instead forming C-O bonds first followed by C-C bond formation. Employing the Nicholas reaction to generate linear ethers as precursors for the total synthesis of halichondrin B and other members of the halichondrin and eribulin families of compounds, this novel approach provides new opportunities for the development of improved syntheses of these complex and valuable compounds. In this Article, we report the syntheses of defined fragments I, MN, EFG, and A. Fragments I and MN were then coupled and elaborated to advanced intermediate IJKLMN, which was joined with fragment EFG to afford, after appropriate elaboration and macrolactonization, the more advanced polycyclic intermediate EFGHIJKLMN. Elaboration of the latter and coupling with fragment A followed by further functionalization completed the total synthesis of halichondrin B through a short and convergent pathway.

6.
Angew Chem Int Ed Engl ; 60(26): 14545-14553, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33848039

RESUMO

The collective synthesis of skeletally diverse Stemona alkaloids featuring tailored dyotropic rearrangements of ß-lactones as key elements is described. Specifically, three typical 5/7/5 tricyclic skeletons associated with stemoamide, tuberostemospiroline and parvistemonine were first accessed through chemoselective dyotropic rearrangements of ß-lactones involving alkyl, hydrogen, and aryl migration, respectively. By the rational manipulation of substrate structures and reaction conditions, these dyotropic rearrangements proceeded with excellent efficiency, good chemoselectivity and high stereospecificity. Furthermore, several polycyclic Stemona alkaloids, including saxorumamide, isosaxorumamide, stemonine and bisdehydroneostemoninine, were obtained from the aforementioned tricyclic skeletons through late-stage derivatizations. A novel visible-light photoredox-catalyzed formal [3+2] cycloaddition was also developed, which offers a valuable tool for accessing oxaspirobutenolide and related scaffolds.


Assuntos
Alcaloides/síntese química , Lactonas/química , Stemonaceae/química , Alcaloides/química , Reação de Cicloadição , Luz , Conformação Molecular , Oxirredução , Processos Fotoquímicos
7.
Angew Chem Int Ed Engl ; 57(43): 14216-14220, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30191641

RESUMO

The first total syntheses of asperchalasines A-E, a collection of unprecedented merocytochalasans, are reported. Aspochalasin B, a key tricyclic cytochalasan monomer, was first synthesized through a unified approach that hinges on a Diels-Alder reaction and a ring-closing metathesis reaction. The bioinspired Diels-Alder reactions of aspochalasin B with different epicoccine precursors were then explored, which enabled the divergent access of the heterodimers asperchalasines B-E as well as related congeners. Furthermore, the heterotrimer asperchalasine A was obtained from one epicoccine unit and two aspochalasin B units through a biomimetic Diels-Alder reaction followed by an oxidative [5+2]-cycloaddition.


Assuntos
Citocalasinas/síntese química , Biomimética , Ciclização , Reação de Cicloadição , Citocalasinas/química , Dimerização , Oxirredução
8.
Angew Chem Int Ed Engl ; 56(51): 16323-16327, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29112300

RESUMO

An enantioselective synthesis of (+)-8-epi-xanthatin hinging on a chiral phosphoric acid catalyzed tandem allylboration/lactonization reaction is reported. With (+)-8-epi-xanthatin as the precursor, the collective synthesis of a series of synthetically challenging xanthanolides was also accomplished. Among them, xanthipungolide, one of the most complex xanthanolide monomers, was accessed through a bioinspired tandem double-bond isomerization/6π electronic cyclization/intramolecular Diels-Alder reaction, and pungiolides A, B, D, E, and L-N, a group of xanthanolide dimers, were assembled through a bioinspired Diels-Alder dimerization followed by late-stage diversification.

9.
Angew Chem Int Ed Engl ; 53(52): 14494-8, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25430055

RESUMO

Starting from xanthatin, the biomimetic synthesis of 4ß,5ß-epoxyxanthatin-1α,4α-endoperoxide, a novel monomeric xanthanolide, has been achieved. Moreover, four unprecedented xanthanolide dimers were synthesized by three different dimerizations of xanthatin, either in a head-to-head or head-to-tail fashion. Notably, these dimeric compounds were firstly identified as artifacts in the laboratory, and two of them, mogolides A and B, proved to be natural products present in the Xanthium mogolium Kitag plant.


Assuntos
Materiais Biomiméticos/síntese química , Furanos/química , Lactonas/síntese química , Peróxidos/síntese química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Materiais Biomiméticos/química , Cristalografia por Raios X , Reação de Cicloadição , Dimerização , Isomerismo , Lactonas/química , Conformação Molecular , Peróxidos/química , Xanthium/química , Xanthium/metabolismo
10.
Beilstein J Org Chem ; 9: 1601-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23946860

RESUMO

Katsumadain A, a naturally occurring influenza virus neuraminidase (NA) inhibitor, was synthesized by using a bioinspired, organocatalytic enantioselective 1,4-conjugate addition of styryl-2-pyranone with cinnamaldehyde, followed by a tandem Horner-Wadsworth-Emmons/oxa Michael addition.

11.
Org Lett ; 14(1): 162-5, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22148865

RESUMO

Enantioselective total syntheses of katsumadain and katsumadain C were achieved concisely through a biomimetic approach. Assembly of styryl-2-pyranone (3) and monoterpene 6 via acid-promoted regio- and stereoselective C-C bond formation afforded katsumadain (2), which underwent the photoinduced [2 + 2] dimerization in a head-to-tail mode to furnish katsumadain C (1).


Assuntos
Materiais Biomiméticos/síntese química , Diarileptanoides/síntese química , Dimerização , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...