Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1397, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914678

RESUMO

Metastability-engineering, e.g., transformation-induced plasticity (TRIP), can enhance the ductility of alloys, however it often comes at the expense of relatively low yield strength. Here, using a metastable Ti-1Al-8.5Mo-2.8Cr-2.7Zr (wt.%) alloy as a model material, we fabricate a heterogeneous laminated structure decorated by multiple-morphological α-nanoprecipitates. The hard α nanoprecipitate in our alloy acts not only as a strengthener to the material, but also as a local stress raiser to activate TRIP in the soft matrix for great uniform elongation and as a promoter to trigger interfacial delamination toughening for superior fracture resistance. By elaborately manipulating the activation sequence of lamellar-thickness-dependent deformation mechanisms in Ti-1Al-8.5Mo-2.8Cr-2.7Zr alloys, the yield strength of the present submicron-laminated alloy is twice that of equiaxed-coarse grained alloys with the same composition, yet without sacrificing the large uniform elongation. The desired mechanical properties enabled by this strategy combining the laminated metastable structure and trifunctional nanoprecipitates provide new insights into designing ultra-strong and ductile materials with great toughness.

2.
Nat Commun ; 13(1): 5966, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216815

RESUMO

Due to the low thermal stability of crystallographic boundaries, the grain boundary engineering (GBE) manifests some limits to the fineness and types of microstructures achievable, while unique chemical boundary engineering (CBE) enables us to create a metallic material with an ultrafine hierarchically heterogeneous microstructure for enhancing the mechanical properties of materials. Here, using a low cost metastable Ti-2.8Cr-4.5Zr-5.2Al (wt.%) alloy as a model material, we create a high density of chemical boundaries (CBs) through the significant diffusion mismatch between Cr and Al alloying elements to architecture hierarchical nano-martensites with an average thickness of ~20 nm. For this metastable titanium alloy, the significantly enhanced yield strength originates from dense nano-martensitic interface strengthening, meanwhile the large ductility is attributed to the multi-stage strain hardening of hierarchical 3D α'/ß lamellae assisted by equiaxed primary α (αp) nodules. The hierarchical nano-martensite engineering strategy confers our alloy a desired combination of strength and ductility, which can potentially be applied to many transformable alloys, and reveal a new target in microstructural design for ultrastrong-yet-ductile structural materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...