Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8012): 579-585, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750235

RESUMO

Towards realizing the future quantum internet1,2, a pivotal milestone entails the transition from two-node proof-of-principle experiments conducted in laboratories to comprehensive multi-node set-ups on large scales. Here we report the creation of memory-memory entanglement in a multi-node quantum network over a metropolitan area. We use three independent memory nodes, each of which is equipped with an atomic ensemble quantum memory3 that has telecom conversion, together with a photonic server where detection of a single photon heralds the success of entanglement generation. The memory nodes are maximally separated apart for 12.5 kilometres. We actively stabilize the phase variance owing to fibre links and control lasers. We demonstrate concurrent entanglement generation between any two memory nodes. The memory lifetime is longer than the round-trip communication time. Our work provides a metropolitan-scale testbed for the evaluation and exploration of multi-node quantum network protocols and starts a stage of quantum internet research.


Assuntos
Cidades , Teoria Quântica , Fótons , Redes de Comunicação de Computadores , Fatores de Tempo , Internet
2.
Phys Rev Lett ; 132(16): 160801, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38701444

RESUMO

A solid-state approach for quantum networks is advantageous, as it allows the integration of nanophotonics to enhance the photon emission and the utilization of weakly coupled nuclear spins for long-lived storage. Silicon carbide, specifically point defects within it, shows great promise in this regard due to the easy of availability and well-established nanofabrication techniques. Despite of remarkable progresses made, achieving spin-photon entanglement remains a crucial aspect to be realized. In this Letter, we experimentally generate entanglement between a silicon vacancy defect in silicon carbide and a scattered single photon in the zero-phonon line. The spin state is measured by detecting photons scattered in the phonon sideband. The photonic qubit is encoded in the time-bin degree of freedom and measured using an unbalanced Mach-Zehnder interferometer. Photonic correlations not only reveal the quality of the entanglement but also verify the deterministic nature of the entanglement creation process. By harnessing two pairs of such spin-photon entanglement, it becomes straightforward to entangle remote quantum nodes at long distance.

3.
Phys Rev Lett ; 132(18): 180803, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38759186

RESUMO

Solid-state qubits with a photonic interface is very promising for quantum networks. Color centers in silicon carbide have shown excellent optical and spin coherence, even when integrated with membranes and nanostructures. Additionally, nuclear spins coupled with electron spins can serve as long-lived quantum memories. Pioneering work previously has realized the initialization of a single nuclear spin and demonstrated its entanglement with an electron spin. In this Letter, we report the first realization of single-shot readout for a nuclear spin in SiC. We obtain a deterministic nuclear spin initialization and readout fidelity of 94.95% with a measurement duration of 1 ms. With a dual-step readout scheme, we obtain a readout fidelity as high as 99.03% within 0.28 ms by sacrificing the success efficiency. Our Letter complements the experimental toolbox of harnessing both electron and nuclear spins in SiC for future quantum networks.

4.
Phys Rev Lett ; 129(5): 050503, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35960556

RESUMO

Quantum internet gives the promise of getting all quantum resources connected, and it will enable applications far beyond a localized scenario. A prototype is a network of quantum memories that are entangled and well separated. In this Letter, we report the establishment of postselected entanglement between two atomic quantum memories physically separated by 12.5 km directly. We create atom-photon entanglement in one node and send the photon to a second node for storage via electromagnetically induced transparency. We harness low-loss transmission through a field-deployed fiber of 20.5 km by making use of frequency down-conversion and up-conversion. The final memory-memory entanglement is verified to have a fidelity of 90% via retrieving to photons. Our experiment makes a significant step forward toward the realization of a practical metropolitan-scale quantum network.

5.
Phys Rev Lett ; 128(6): 060502, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35213187

RESUMO

Hybrid matter-photon entanglement is the building block for quantum networks. It is very favorable if the entanglement can be prepared with a high probability. In this Letter, we report the deterministic creation of entanglement between an atomic ensemble and a single photon by harnessing the Rydberg blockade. We design a scheme that creates entanglement between a single photon's temporal modes and the Rydberg levels that host a collective excitation, using a process of cyclical retrieving and patching. The hybrid entanglement is tested via retrieving the atomic excitation as a second photon and performing correlation measurements, which suggest an entanglement fidelity of 87.8%. Our source of matter-photon entanglement will enable the entangling of remote quantum memories with much higher efficiency.

6.
Phys Rev Lett ; 127(16): 160502, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34723577

RESUMO

In this Letter we report an experiment that verifies an atomic-ensemble quantum memory via a measurement-device-independent scheme. A single photon generated via Rydberg blockade in one atomic ensemble is stored in another atomic ensemble via electromagnetically induced transparency. After storage for a long duration, this photon is retrieved and interfered with a second photon to perform a joint Bell-state measurement (BSM). The quantum state for each photon is chosen based on a quantum random number generator, respectively, in each run. By evaluating correlations between the random states and BSM results, we certify that our memory is genuinely entanglement preserving.

7.
Phys Rev Lett ; 126(9): 090501, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33750156

RESUMO

A cold atomic ensemble suits well for optical quantum memories, and its entanglement with a single photon forms the building block for quantum networks that give promise for many revolutionary applications. Efficiency and lifetime are among the most important figures of merit for a memory. In this Letter, we report the realization of entanglement between an atomic ensemble and a single photon with subsecond lifetime and high efficiency. We engineer dual control modes in a ring cavity to create entanglement and make use of three-dimensional optical lattice to prolong memory lifetime. The memory efficiency is 38% for 0.1 s storage. We verify the atom-photon entanglement after 1 s storage by testing the Bell inequality with a result of S=2.36±0.14.

8.
Rev Sci Instrum ; 91(12): 123106, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33379940

RESUMO

Silicon single-photon detectors (SPDs) are key devices for detecting single photons in the visible wavelength range. Photon detection efficiency (PDE) is one of the most important parameters of silicon SPDs, and increasing PDE is highly required for many applications. Here, we present a practical approach to increase the PDE of silicon SPDs with a monolithic integrated circuit of active quenching and active reset (AQAR). The AQAR integrated circuit is specifically designed for thick silicon single-photon avalanche diodes (SPADs) with high breakdown voltage (250 V-450 V) and then fabricated via the process of high-voltage 0.35-µm bipolar-CMOS-DMOS. The AQAR integrated circuit implements the maximum transition voltage of ∼68 V with 30 ns quenching time and 10 ns reset time, which can easily boost PDE to the upper limit by regulating the excess bias up to a high enough level. By using the AQAR integrated circuit, we design and characterize two SPDs with the SPADs disassembled from commercial products of single-photon counting modules (SPCMs). Compared with the original SPCMs, the PDE values are increased from 68.3% to 73.7% and 69.5% to 75.1% at 785 nm, respectively, with moderate increases in dark count rate and afterpulse probability. Our approach can effectively improve the performance of the practical applications requiring silicon SPDs.

9.
Nature ; 578(7794): 240-245, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32051600

RESUMO

A quantum internet that connects remote quantum processors1,2 should enable a number of revolutionary applications such as distributed quantum computing. Its realization will rely on entanglement of remote quantum memories over long distances. Despite enormous progress3-12, at present the maximal physical separation achieved between two nodes is 1.3 kilometres10, and challenges for longer distances remain. Here we demonstrate entanglement of two atomic ensembles in one laboratory via photon transmission through city-scale optical fibres. The atomic ensembles function as quantum memories that store quantum states. We use cavity enhancement to efficiently create atom-photon entanglement13-15 and we use quantum frequency conversion16 to shift the atomic wavelength to telecommunications wavelengths. We realize entanglement over 22 kilometres of field-deployed fibres via two-photon interference17,18 and entanglement over 50 kilometres of coiled fibres via single-photon interference19. Our experiment could be extended to nodes physically separated by similar distances, which would thus form a functional segment of the atomic quantum network, paving the way towards establishing atomic entanglement over many nodes and over much longer distances.

10.
Phys Rev Lett ; 123(14): 140504, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31702192

RESUMO

Entanglement between a single photon and a matter qubit is an indispensable resource for quantum repeater and quantum networks. With atomic ensembles, the entanglement creation probability is typically very low to inhibit high-order events. In this paper, we propose and experimentally realize a scheme that creates atom-photon entanglement with an intrinsic efficiency of 50%. We make use of Rydberg blockade to generate two collective excitations, lying in separate internal states. By introducing the momentum degree of freedom for the excitations, and interfering them via Raman coupling, we entangle the two excitations. Via retrieving one excitation, we create the entanglement between the polarization of a single photon and the momentum of the remaining atomic excitation, with a measured fidelity of 0.901(8). The retrieved optical field is verified to be genuine single photons. The realized entanglement may be employed to create entanglement between two distant nodes in a fully heralded way and with a much higher efficiency.

11.
Phys Rev Lett ; 121(8): 080501, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30192608

RESUMO

Interference of multiple photons via a linear-optical network has profound applications for quantum foundation, quantum metrology, and quantum computation. Particularly, a boson sampling experiment with a moderate number of photons becomes intractable even for the most powerful classical computers. Scaling up from small-scale experiments requires highly indistinguishable single photons, which may be prohibited for many physical systems. Here we report a time-resolved multiphoton interference experiment by using photons not overlapping in their frequency spectra from three atomic-ensemble quantum memories. Time-resolved measurement enables us to observe nonclassical multiphoton correlation landscapes, which agree well with theoretical calculations. Symmetries in the landscapes are identified to reflect symmetries of the optical network. Our experiment can be further extended to realize boson sampling with many photons and plenty of modes, which thus may provide a route towards quantum supremacy with nonidentical photons.

12.
Phys Rev Lett ; 117(18): 180501, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27835003

RESUMO

We demonstrate deterministic generation of two distinct collective excitations in one atomic ensemble, and we realize the Hong-Ou-Mandel interference between them. Using Rydberg blockade we create single collective excitations in two different Zeeman levels, and we use stimulated Raman transitions to perform a beam-splitter operation between the excited atomic modes. By converting the atomic excitations into photons, the two-excitation interference is measured by photon coincidence detection with a visibility of 0.89(6). The Hong-Ou-Mandel interference witnesses an entangled NOON state of the collective atomic excitations, and we demonstrate its two times enhanced sensitivity to a magnetic field compared with a single excitation. Our work implements a minimal instance of boson sampling and paves the way for further multimode and multiexcitation studies with collective excitations of atomic ensembles.

13.
Phys Rev Lett ; 115(13): 133002, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26451551

RESUMO

Spin echo is a powerful technique to extend atomic or nuclear coherence times by overcoming the dephasing due to inhomogeneous broadenings. However, there are disputes about the feasibility of applying this technique to an ensemble-based quantum memory at the single-quanta level. In this experimental study, we find that noise due to imperfections of the rephasing pulses has both intense superradiant and weak isotropic parts. By properly arranging the beam directions and optimizing the pulse fidelities, we successfully manage to operate the spin echo technique in the quantum regime by observing nonclassical photon-photon correlations as well as the quantum behavior of retrieved photons. Our work for the first time demonstrates the feasibility of harnessing the spin echo method to extend the lifetime of ensemble-based quantum memories at the single-quanta level.

14.
Phys Rev Lett ; 114(21): 210501, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26066421

RESUMO

Entanglement between a single photon and a quantum memory forms the building blocks for a quantum repeater and quantum network. Previous entanglement sources are typically with low retrieval efficiency, which limits future larger-scale applications. Here, we report a source of highly retrievable spin-wave-photon entanglement. Polarization entanglement is created through interaction of a single photon with an ensemble of atoms inside a low-finesse ring cavity. The cavity is engineered to be resonant for dual spin-wave modes, which thus enables efficient retrieval of the spin-wave qubit. An intrinsic retrieval efficiency up to 76(4)% has been observed. Such a highly retrievable atom-photon entanglement source will be very useful in future larger-scale quantum repeater and quantum network applications.

15.
Phys Rev Lett ; 112(10): 103602, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24679292

RESUMO

Entangling independent photons is not only of fundamental interest but also of crucial importance for quantum-information science. Two-photon interference is a major method for entangling independent identical photons. If two photons are different in color, perfect two-photon coalescence can no longer happen, which makes the entangling of different-color photons difficult to realize. In this Letter, by exploring and developing time-resolved measurement and active feed forward, we have entangled two independent photons of different colors for the first time. We find that entanglement with a varying form can be identified for different two-photon temporal modes through time-resolved measurement. By using active feed forward, we are able to convert the varying entanglement into uniform entanglement. Adopting these measures, we have successfully entangled two photons with a frequency separation 16 times larger than their linewidths. In addition to its fundamental interest, our work also provides an approach for solving the frequency-mismatch problem for future quantum networks.

16.
Proc Natl Acad Sci U S A ; 109(50): 20347-51, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23144222

RESUMO

Quantum teleportation and quantum memory are two crucial elements for large-scale quantum networks. With the help of prior distributed entanglement as a "quantum channel," quantum teleportation provides an intriguing means to faithfully transfer quantum states among distant locations without actual transmission of the physical carriers [Bennett CH, et al. (1993) Phys Rev Lett 70(13):1895-1899]. Quantum memory enables controlled storage and retrieval of fast-flying photonic quantum bits with stationary matter systems, which is essential to achieve the scalability required for large-scale quantum networks. Combining these two capabilities, here we realize quantum teleportation between two remote atomic-ensemble quantum memory nodes, each composed of ∼10(8) rubidium atoms and connected by a 150-m optical fiber. The spin wave state of one atomic ensemble is mapped to a propagating photon and subjected to Bell state measurements with another single photon that is entangled with the spin wave state of the other ensemble. Two-photon detection events herald the success of teleportation with an average fidelity of 88(7)%. Besides its fundamental interest as a teleportation between two remote macroscopic objects, our technique may be useful for quantum information transfer between different nodes in quantum networks and distributed quantum computing.

17.
Phys Rev Lett ; 108(21): 210501, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-23003228

RESUMO

Coherent and reversible storage of multiphoton entanglement with a multimode quantum memory is essential for scalable all-optical quantum information processing. Although a single photon has been successfully stored in different quantum systems, storage of multiphoton entanglement remains challenging because of the critical requirement for coherent control of the photonic entanglement source, multimode quantum memory, and quantum interface between them. Here we demonstrate a coherent and reversible storage of biphoton Bell-type entanglement with a holographic multimode atomic-ensemble-based quantum memory. The retrieved biphoton entanglement violates the Bell inequality for 1 µs storage time and a memory-process fidelity of 98% is demonstrated by quantum state tomography.

18.
Phys Rev Lett ; 104(4): 043601, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20366709

RESUMO

We report the heralded generation of an atomic NOON state by observation of phase super resolution in a motion-sensitive spin-wave (SW) interferometer. The SW interferometer is implemented by generating a superposition of two SWs and observing the interference between them, where the interference fringe is sensitive to the atomic collective motion. By heralded generation of a second order NOON state in the SW interferometer, we observe the interference pattern which provides strong evidence of phase super resolution. The demonstrated SW interferometer can in principle be scaled up to a highly entangled state, and thus is of fundamental importance, and might be used as an inertial sensor.

19.
Phys Rev Lett ; 101(19): 190501, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-19113250

RESUMO

We report an experimental realization of a narrow band polarization-entangled photon source with a linewidth of 9.6 MHz through cavity-enhanced spontaneous parametric down-conversion. This linewidth is comparable to the typical linewidth of atomic ensemble-based quantum memories. Single-mode output is realized by setting a reasonable cavity length difference between different polarizations, using of temperature controlled etalons and actively stabilizing the cavity. The entangled property is characterized with quantum state tomography, giving a fidelity of 94% between our state and a maximally entangled state. The coherence length is directly measured to be 32 m through two-photon interference.

20.
Phys Rev Lett ; 94(15): 150501, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15904125

RESUMO

We report free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13 km. It is shown that the desired entanglement can still survive after both entangled photons have passed through the noisy ground atmosphere with a distance beyond the effective thickness of the aerosphere. This is confirmed by observing a spacelike separated violation of Bell inequality of 2.45+/-0.09. On this basis, we exploit the distributed entangled photon source to demonstrate the Bennett-Brassard 1984 quantum cryptography scheme. The distribution distance of entangled photon pairs achieved in the experiment is for the first time well beyond the effective thickness of the aerosphere, hence presenting a significant step towards satellite-based global quantum communication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...