Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Int J Neurosci ; : 1-19, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758136

RESUMO

OBJECTIVE: The aim of this study was to investigate the effects of virtual reality training combined with traditional Chinese medicine health preservation therapy on cognitive function, neurological function, and physical function of stroke patients. METHODS: The patients were randomly divided into an experimental group (receiving virtual reality training combined with traditional Chinese medicine health preservation therapy) and a control group (receiving conventional rehabilitation treatment combined with traditional Chinese medicine health preservation therapy). A series of cognitive, neurological, and physical function assessments were conducted to collect and analyze data from both groups before treatment, after treatment, and during follow-up. The application of traditional Chinese medicine health preservation concepts was also explored. RESULTS: After treatment, the experimental group had significantly higher scores in the Mini-Mental State Examination (MMSE) compared to the control group. The overall effective rate of neurological function in the experimental group was higher than that in the control group. The Fugl-Meyer Assessment (FMA) scores for upper limb function in the experimental group were significantly higher than those in the control group. The degree of improvement in the Modified Barthel Index scores after treatment was significantly better in the experimental group compared to the control group (all P < 0.05). CONCLUSION: The results of this study demonstrate that virtual reality training combined with traditional Chinese medicine health preservation therapy significantly improves cognitive function, neurological function, and physical function in stroke patients. This approach provides new insights and methods for stroke rehabilitation therapy and is worthy of promotion.

2.
Environ Int ; 187: 108724, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38735076

RESUMO

The mass concentration of atmospheric particulate matter (PM) has been continuously decreasing in the Beijing-Tianjin-Hebei region. However, health endpoints do not exhibit a linear correlation with PM mass concentrations. Thus, it is urgent to clarify the prior toxicological components of PM to further improve air quality. In this study, we analyzed the long-term oxidative potential (OP) of water-soluble PM2.5, which is generally considered more effective in assessing hazardous exposure to PM in Beijing from 2018 to 2022 based on the dithiothreitol assay and identified the crucial drivers of the OP of PM2.5 based on online monitoring of air pollutants, receptor model, and random forest (RF) model. Our results indicate that dust, traffic, and biomass combustion are the main sources of the OP of PM2.5 in Beijing. The complex interactions of dust particles, black carbon, and gaseous pollutants (nitrogen dioxide and sulfur dioxide) are the main factors driving the OP evolution, in particular, leading to the abnormal rise of OP in Beijing in 2022. Our data shows that a higher OP is observed in winter and spring compared to summer and autumn. The diurnal variation of the OP is characterized by a declining trend from 0:00 to 14:00 and an increasing trend from 14:00 to 23:00. The spatial variation in OP of PM2.5 was observed as the OP in Beijing is lower than that in Shijiazhuang, while it is higher than that in Zhenjiang and Haikou, which is primarily influenced by the distribution of black carbon. Our results are of significance in identifying the key drivers influencing the OP of PM2.5 and provide new insights for advancing air quality improvement efforts with a focus on safeguarding human health in Beijing.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Material Particulado/análise , Pequim , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Oxirredução , Melhoria de Qualidade , Estações do Ano
3.
Lancet Diabetes Endocrinol ; 12(3): 184-195, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330988

RESUMO

BACKGROUND: Data on the benefits of the once weekly GLP-1 receptor agonist semaglutide 2·4 mg for weight management in people from east Asia are insufficient. The objective of this study was to determine the efficacy and safety of once weekly semaglutide 2·4 mg versus placebo for weight management in a predominantly east Asian adult population. METHODS: This randomised phase 3a, double-blind multicentre controlled trial (STEP 7) recruited participants from 23 hospitals and trial centres in China, Hong Kong, Brazil, and South Korea. Adults with overweight or obesity, with or without type 2 diabetes, were randomly assigned (2:1) to receive a subcutaneous injection of either semaglutide 2·4 mg or placebo once a week for 44 weeks, plus a diet and physical activity intervention. Randomisation was done in blocks of six with an interactive web response system and was stratified by diagnosis of type 2 diabetes. Participants, investigators, and the trial sponsor were masked to treatment allocation until after database lock. Primary endpoints were percentage change in mean bodyweight and proportion of participants having reached a weight reduction of at least 5% of bodyweight from baseline to week 44. Safety was assessed in all participants who received at least one dose of study drug. This study is registered with ClinicalTrials.gov, NCT04251156, and is now complete. FINDINGS: From Dec 8, 2020, to Aug 23, 2022, 448 participants were screened, of whom 375 were randomly assigned to either the semaglutide 2·4 mg group (n=249) or the placebo group (n=126). Estimated mean percentage change in bodyweight from baseline to week 44 was -12·1% (SE 0·5) with semaglutide 2·4 mg versus -3·6% (0·7) with placebo (estimated treatment difference -8·5 percentage points [95% CI -10·2 to -6·8]; p<0·0001). At week 44, the proportion of participants who lost 5% or more of their bodyweight was higher in the semaglutide 2·4 mg group than in the placebo group (203/238 [85%] vs 36/116 [31%]); odds ratio 13·1 (95% CI 7·4-23·1; p<0·0001). Adverse events were reported by 231 (93%) of 249 participants in the semaglutide 2·4 mg group and 108 (86%) of 126 participants in the placebo group, the most common of which were gastrointestinal disorders (168/249, 67% vs 45/126, 36%). INTERPRETATION: The results of this study support the use of semaglutide 2·4 mg for weight management in people of east Asian ethnicity with overweight or obesity and with or without type 2 diabetes. FUNDING: Novo Nordisk. TRANSLATIONS: For the Mandarin, Portuguese and South Korean translations of the abstract see Supplementary Materials section.


Assuntos
Peptídeos Semelhantes ao Glucagon , Obesidade , Sobrepeso , Adulto , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Método Duplo-Cego , População do Leste Asiático , Peptídeos Semelhantes ao Glucagon/uso terapêutico , Hipoglicemiantes/uso terapêutico , Obesidade/tratamento farmacológico , Sobrepeso/tratamento farmacológico , Resultado do Tratamento
4.
Huan Jing Ke Xue ; 44(12): 6463-6473, 2023 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-38098375

RESUMO

To explore the characteristics and sources of PM2.5 pollution in winter of Handan City in the past five years, PM2.5 samples were collected in winter of 2016 to 2020, and eight types of water-soluble inorganic ions were analyzed. The principal component analysis(PCA) model was used to analyze the types of pollution sources, and the backward trajectory and potential source contribution factor(PSCF) were used to simulate the transport trajectory and pollution sources. The results showed that the PM2.5 concentration in winter of 2018 was the highest, increasing by 60.44%, 25.46%, 91.43%, and 21.53% compared with that in 2016, 2017, 2019, and 2020, respectively. In the winter of 2020, the concentration of water-soluble inorganic ions(WSIIs) decreased by 18.86% compared with that in 2016, and WSIIs/PM2.5 decreased to 26.69%. The PM2.5 concentration(110.20-209.65 µg·m-3) at night was higher than that in the daytime(95.21-193.00 µg·m-3). The concentration of NO3- and NH4+ increased more at night. On the contrary, the concentration and proportion of Cl-decreased annually. In the winter of 2020, the daytime concentrations of K+, Ca2+, Na+, and Mg2+ decreased by 69.72%, 97.10%, 90.91%, and 74.51% compared with that of 2018, and the night concentrations decreased by 66.67%, 95.38%, 91.67%, and 77.78%, respectively. In 2020, the concentrations of NO3-, SO42-, and NH4+ on polluted days were 4.90, 5.80, and 5.20 times those on non-polluted days, with the largest increase in five years. PCA results showed that the main sources of pollution were secondary sources, coal sources, biomass combustion sources, and road and building dust. The backward trajectory and PSCF analysis results showed that pollution transport continued to exist between south-central Mongolia and central Inner Mongolia in winter and was influenced by the transport between northern Henan and Handan and central Hebei and Handan in winter of 2016 and 2017, whereas the latter had a greater impact in winter of 2018-2020.

5.
J Environ Sci (China) ; 134: 77-85, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37673535

RESUMO

Mineralization of benzene, toluene, and xylene (BTX) with high efficiency at room temperature is still a challenge for the purification of indoor air. In this work, a foam Ti/Sb-SnO2/ß-PbO2 anode catalyst was prepared for electrocatalytically oxidizing gaseous toluene in an all-solid cell at ambient temperature. The complex Ti/Sb-SnO2/ß-PbO2 anode, which was prepared by sequentially deposing Sb-SnO2 and ß-PbO2 on a foam Ti substrate, shows high electrocatalytic oxidation efficiency of toluene (80%) at 7 hr of reaction and high CO2 selectivity (94.9%) under an optimized condition, i.e., a cell voltage of 2.0 V, relative humidity of 60% and a flow rate of 100 mL/min. The better catalytic performance can be ascribed to the high production rate of ⋅OH radicals from discharging adsorbed water and the inhibition of oxygen evolution on the surface of foam Ti/Sb-SnO2/ß-PbO2 anode when compared with the foam Ti/Sb-SnO2 anode. Our results demonstrate that prepared complex electrodes can be potentially used for electrocatalytic removal of gaseous toluene at room temperature with a good performance.


Assuntos
Gases , Titânio , Oxirredução , Eletrodos , Tolueno
6.
Adv Mater ; 35(45): e2304133, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37474109

RESUMO

The electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) is a promising method for the efficient production of biomass-derived high-value-added chemicals. However, its practical application is limited by: 1) the low activity and selectivity caused by the competitive adsorption of HMF and OH- and 2) the low operational stability caused by the uncontrollable reconstruction of the catalyst. To overcome these limitations, a series of Ni3 S2 /NiOx -n catalysts with controllable compositions and well-defined structures are synthesized using a novel in situ controlled surface reconstruction strategy. The adsorption behavior of HMF and OH- can be continuously adjusted by varying the ratio of NiOx to Ni3 S2 on the catalysts surface, as indicated by in situ characterizations, contact angle analysis, and theoretical simulations. Owing to the balanced competitive adsorption of HMF and OH- , the optimized Ni3 S2 /NiOx -15 catalyst exhibited remarkable HMF electrocatalytic oxidation performance, with the current density reaching 366 mA cm-2 at 1.5 VRHE and the Faradaic efficiency of the product, 2,5-furanedicarboxylic acid, reaching 98%. Moreover, Ni3 S2 /NiOx -15 exhibits excellent durability, with its activity and structure remaining stable for over 100 h of operation. This study provides a new route for the design and construction of catalysts for value-added biomass conversion and offers new insights into enhancing catalytic performance by balancing competitive adsorption.

7.
ChemSusChem ; 16(19): e202300666, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37505451

RESUMO

In this work, α-Fe2 O3 photoanode consisted of (110)-oriented α-Fe2 O3 single crystals were synthesized by a facile hydrothermal method. By using particular additive (C4 MimBF4 ) and regulation of hydrothermal reaction time, the Fe-25 consisted of a single-layer of highly crystalline (110)-oriented crystals with fewer grain boundaries, which was vertically grown on the substrate. As a result, the charge separation efficiency and photoelectrochemical (PEC) performance of Fe-25A (Fe-25 after dehydration treatment) have been greatly improved. Fe-25A yields a photocurrent of 1.34 mA cm-2 (1.23 V vs RHE) and an incident photon-to-current conversion efficiency (IPCE) of 31.95 % (380 nm). With the assistance of cobalt-phosphate water oxidation catalyst (Co-Pi), the PEC performance could be further improved by enhancing the holes transfer at electrode/electrolyte interface and inhibiting surface recombination. Fe-25A/Co-Pi yields a photocurrent of 2.67 mA cm-2 (1.23 V vs RHE) and IPCE value of 50.8 % (380 nm), which is 3.67 times and 2.39 times as that of Fe-2A/Co-Pi. Our work provides a simple method to fabricate highly efficient Fe2 O3 photoanodes consist of characteristic (110)-oriented single crystals with high crystallinity and high quality interface contact to enhance charge separation efficiencies.

8.
Langmuir ; 39(24): 8503-8515, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37284830

RESUMO

Catalytic oxidation has been extensively studied as a promising technology for the removal of toluene from industrial waste gases and indoor air. However, the debate regarding the oxidation mechanism is far from resolved. CexMn1-xO2 catalysts with different mixing ratios are prepared by the sol-gel method and found to exhibit better catalytic activities for toluene oxidation than a single oxide. Characterizations and theoretical calculations reveal that the doped Mn increases the number of oxygen vacancies and the ability of oxygen vacancies to activate aromatic rings, which promotes the rate-determining step of toluene oxidation, i.e., ring-opening reactions. The oxidation products detected by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and Vocus proton transfer reaction mass spectrometry (Vocus-PTR-MS) show that the doped Mn significantly improves the ring-opening efficiency and subsequently yields more short-chain products, such as pyruvic acid and acetic acid. A comprehensive oxidation pathway of toluene is refined in this work.

9.
Angew Chem Int Ed Engl ; 62(36): e202302919, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37389483

RESUMO

Photoconversion of CO2 and H2 O into ethanol is an ideal strategy to achieve carbon neutrality. However, the production of ethanol with high activity and selectivity is challenging owing to the less efficient reduction half-reaction involving multi-step proton-coupled electron transfer (PCET), a slow C-C coupling process, and sluggish water oxidation half-reaction. Herein, a two-dimensional/two-dimensional (2D/2D) S-scheme heterojunction consisting of black phosphorus and Bi2 WO6 (BP/BWO) was constructed for photocatalytic CO2 reduction coupling with benzylamine (BA) oxidation. The as-prepared BP/BWO catalyst exhibits a superior photocatalytic performance toward CO2 reduction, with a yield of 61.3 µmol g-1 h-1 for ethanol (selectivity of 91 %).In situ spectroscopic studies and theoretical calculations reveal that S-scheme heterojunction can effectively promote photogenerated carrier separation via the Bi-O-P bridge to accelerate the PCET process. Meanwhile, electron-rich BP acts as the active site and plays a vital role in the process of C-C coupling. In addition, the substitution of BA oxidation for H2 O oxidation can further enhance the photocatalytic performance of CO2 reduction to C2 H5 OH. This work opens a new horizon for exploring novel heterogeneous photocatalysts in CO2 photoconversion to C2 H5 OH based on cooperative photoredox systems.

10.
NPJ Clim Atmos Sci ; 6(1): 37, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214635

RESUMO

Wintertime meteorological conditions are usually unfavorable for ozone (O3) formation due to weak solar irradiation and low temperature. Here, we observed a prominent wintertime O3 pollution event in Shijiazhuang (SJZ) during the Chinese New Year (CNY) in 2021. Meteorological results found that the sudden change in the air pressure field, leading to the wind changing from northwest before CNY to southwest during CNY, promotes the accumulation of air pollutants from southwest neighbor areas of SJZ and greatly inhibits the diffusion and dilution of local pollutants. The photochemical regime of O3 formation is limited by volatile organic compounds (VOCs), suggesting that VOCs play an important role in O3 formation. With the developed O3 formation path tracing (OFPT) approach for O3 source apportionment, it has been found that highly reactive species, such as ethene, propene, toluene, and xylene, are key contributors to O3 production, resulting in the mean O3 production rate (PO3) during CNY being 3.7 times higher than that before and after CNY. Industrial combustion has been identified as the largest source of the PO3 (2.6 ± 2.2 ppbv h-1), with the biggest increment (4.8 times) during CNY compared to the periods before and after CNY. Strict control measures in the industry should be implemented for O3 pollution control in SJZ. Our results also demonstrate that the OFPT approach, which accounts for the dynamic variations of atmospheric composition and meteorological conditions, is effective for O3 source apportionment and can also well capture the O3 production capacity of different sources compared with the maximum incremental reactivity (MIR) method.

11.
Chemistry ; 29(39): e202300999, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37114518

RESUMO

Severe poisonousness and prolonged instability existing in organic-inorganic lead-based perovskite are two matters seriously hindering its potential future application in photocatalysis. Therefore, it is particularly important to explore ecology-friendly, air-stable and highly active metal-halide perovskites. Herein, a new and stable lead-free perovskite Cs2 SnBr6 decorated with reduced graphene oxide (rGO), is synthesized and employed in the photocatalytic organic conversion. The as-prepared Cs2 SnBr6 is ultrastable, exhibiting no clear changes after being placed in the air for six months. The Cs2 SnBr6 /rGO composite shows excellent photocatalytic activity in photo-driven-oxidation of 5-hydroxymethylfurfural (HMF) to high value enclosed 2,5-diformylfuran (DFF), achieving>99.5 % conversion of HMF and 88 % DFF selectivity in the presence of green oxidant O2 . Comprehensive characterizations disclose a multistep reaction mechanism, demonstrating that the molecular oxygen, photogenerated carriers, ⋅O2 - and 1 O2 altogether synergistically participate in the effective photo-driven conversion of HMF to DFF. This work expands the material gallery towards selective organic conversion and environmentally friendly perovskite options for photocatalytic application.

12.
Chemistry ; 29(25): e202203765, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36752729

RESUMO

Photocatalytic hydrogen peroxide (H2 O2 ) production on BiVO4 photocatalysts using water and oxygen as raw materials is a green and sustainable process. However, the photocatalytic efficiency of pristine BiVO4 is limited by severe charge recombination. In this work, rare earth element Yttrium (Y) doped BiVO4 photocatalysts were fabricated by the hydrothermal method. In the photocatalytic H2 O2 production experiment, the optimized Y-doped BiVO4 photocatalyst produced 114 µmol g-1 h-1 of H2 O2 under simulated sunlight (AM1.5) irradiation, which is four times higher than production activity of pure BiVO4 (26 µmol g-1 h-1 ). Density functional theory (DFT) calculation revealed that Y doping can enhance oxygen adsorption on the BiVO4 photocatalyst surface. Mechanistic investigations suggest that the doping process induces the in situ formation of monoclinic/tetragonal BiVO4 heterojunction, which further promotes the photogenerated carriers separation efficiency.

13.
ACS Appl Mater Interfaces ; 14(45): 51029-51040, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36325951

RESUMO

Photocatalytic CO2 cycloaddition is a promising approach for CO2 value-added processes. However, the efficiency of plasmon-assisted CO2 cycloaddition still needs to be improved and the reaction mechanism is unclear. Herein, g-C3N4/Ag (ACN-Ag) hybrids exhibited superior activity of CO2 cycloaddition by coupling a semiconductor into the plasmonic system, in which the ACN grafting amino group by the formation of carbon vacancies can enhance CO2 chemisorption; meanwhile, photo-generated electrons from ACN transfer to Ag to form high-energy electrons, which can activate propylene oxide, accelerating the ring-opening step. Importantly, photo-generated electron injection from ACN to Ag and the interaction between Ag nanoparticles and ACN were confirmed by single-particle photoluminescence spectroscopy. The wavelength-dependent activity demonstrated that the plasmon excitation is crucial for the reaction. Moreover, in situ single-particle PL quenching caused by propylene oxide and in situ electron paramagnetic resonance verified the activation of propylene oxide by ACN-Ag. This work is conducive to an in-depth understanding of the mechanism of CO2 cycloaddition at the single-particle level and provides guidance for the organic synthesis.

14.
Nat Commun ; 13(1): 6887, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371439

RESUMO

Ammonium salt is an important component of particulate matter with aerodynamic diameter less than 2.5 µm (PM2.5) and has significant impacts on air quality, climate, and natural ecosystems. However, a fundamental understanding of the conversion kinetics from ammonia to ammonium in unique environments of high aerosol loading is lacking. Here, we report the uptake coefficient of ammonia (γNH3) on ambient PM2.5 varying from 2.2 × 10-4 to 6.0 × 10-4 in the North China Plain. It is significantly lower than those on the model particles under simple conditions reported in the literature. The probability-weighted γNH3 increases obviously, which is well explained by the annual decrease in aerosol pH due to the significant decline in alkali and alkali earth metal contents from the emission source of dust. Our results elaborate on the complex interactions between primary emissions and the secondary formation of aerosols and the important role of dust in atmospheric chemistry.


Assuntos
Poluentes Atmosféricos , Compostos de Amônio , Poeira/análise , Poluentes Atmosféricos/análise , Amônia , Ecossistema , Monitoramento Ambiental/métodos , Material Particulado/análise , Aerossóis/análise , China , Álcalis , Estações do Ano
15.
Angew Chem Int Ed Engl ; 61(41): e202209446, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35989227

RESUMO

Selective CO2 photoreduction to hydrocarbon fuels such as CH4 is promising and sustainable for carbon-neutral future. However, lack of proper binding strengths with reaction intermediates makes it still a challenge for photocatalytic CO2 methanation with both high activity and selectivity. Here, low-coordination single Au atoms (Au1 -S2 ) on ultrathin ZnIn2 S4 nanosheets was synthesized by a complex-exchange route, enabling exceptional photocatalytic CO2 reduction performance. Under visible light irradiation, Au1 /ZnIn2 S4 catalyst exhibits a CH4 yield of 275 µmol g-1 h-1 with a selectivity as high as 77 %. As revealed by detailed characterizations and density functional theory calculations, Au1 /ZnIn2 S4 with Au1 -S2 structure not only display fast carrier transfer to underpin its superior activity, but also greatly reduce the energy barrier for protonation of *CO and stabilize the *CH3 intermediate, thereby leading to the selective CH4 generation from CO2 photoreduction.

16.
Adv Sci (Weinh) ; 9(15): e2105299, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35315250

RESUMO

Overall water splitting to generate H2 and O2 is vital in solving energy problem. It is still a great challenge to seek efficient visible light photocatalyst to realize overall water splitting. In this work, the tetragonal zircon BiVO4 is prepared by epitaxial growth on FTO substrate and its overall water splitting reaction is studied. Under the influence of epitaxial strain, the conduction band position shifts negatively and beyond H+ /H2 reduction potential (0 V vs NHE), which enables it to possess the photocatalytic hydrogen evolution activity. After loading cocatalysts, the overall water splitting (λ > 400 nm) is realized (H2 : ≈65.7 µmol g-1 h-1 , O2 : ≈32.6 µmol g-1 h-1 ), and the value of solar hydrogen conversion efficiency is 0.012%. The single-particle photoluminescence (PL) spectra and PL decay kinetics tests demonstrate the cocatalysts are beneficial to the separation and transfer of carriers. The new strategy of adjusting the band structure by strain is provided.

17.
Sci Total Environ ; 808: 152191, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34875334

RESUMO

Carbonaceous aerosol is one of the main components of atmospheric particulate matter, which is of great significance due to its role in climate change, earth's radiation balance, visibility, and human health. In this work, carbonaceous aerosols were measured in Shijiazhuang and Beijing using the OC/EC analyzer from December 1, 2019 to March 15, 2020, which covered the Coronavirus Disease 2019 (COVID-19) pandemic. The observed results show that the gas-phase pollutants, such as NO, NO2, and aerosol-phase pollutants (Primary Organic Compounds, POC) from anthropogenic emissions, were significantly reduced during the lockdown period due to limited human activities in North China Plain (NCP). However, the atmospheric oxidation capacity (Ox/CO) shows a significantly increase during the lockdown period. Meanwhile, additional sources of nighttime Secondary Organic Carbon (SOC), Secondary Organic Aerosol (SOA), and babs, BrC(370 nm) are observed and ascribed to the nocturnal chemistry related to NO3 radical. The Potential Source Contribution Function (PSCF) analysis indicates that the southeast areas of the NCP region contributed more to the SOC during the lockdown period than the normal period. Our results highlight the importance of regional nocturnal chemistry in SOA formation.


Assuntos
Poluentes Atmosféricos , COVID-19 , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , China , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Material Particulado/análise , SARS-CoV-2 , Estações do Ano
18.
Sci Total Environ ; 782: 146845, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33848867

RESUMO

High ozone concentrations promote the formation of nitrate in the nocturnal residual layer (RL), but this phenomenon has not been confirmed by direct observation. In this study, ozone, water-soluble ions in PM2.5 and the corresponding meteorological factors in the stable boundary layer, RL and mixing layer were observed by portable instruments carried on a tethered balloon over the North China Plain. The ozone concentration significantly increased in the RL compared to that in the stable boundary layer, while particulate nitrate significantly decreased, except in the clouds. Unfavorable environmental conditions, i.e., high temperature, low relative humidity, low aerosol surface area, and weak particle acidity, are not conducive to dinitrogen pentoxide uptake and hydrolysis to form particulate nitrate in the RL, and are conducive to the volatilization of nitrate to a gaseous state. Thus, our observations differed from traditional reports and confirmed that the morning peak of particulate nitrate at ground level is not related to the downward transport of nitrate from the RL. In addition, evidence for nitrate formation in cloudy weather is provided, and the possible impact on ozone is discussed.

19.
Sci Total Environ ; 745: 141025, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32738691

RESUMO

Nitrous acid (HONO) is an important precursor of hydroxyl radical (OH) in the atmosphere. It is also toxic to human health. In this work, HONO concentrations were measured in Shijiazhuang using a Monitor for AeRosols and Gases in ambient Air (MARGA) from December 15, 2019 to March 15, 2020, which covered the heavy air pollution season, the Chinese New Year (CNY) vocation and the Corona Virus Disease-19 (COVID-19) lockdown period. During & after CNY overlapping COVID-19 lockdown, the air quality was significantly improved because of both the emission reduction and the increase in diffusion ability of air masses. The mean HONO concentration was 2.43 ± 1.08 ppbv before CNY, while it decreased to 1.53 ± 1.16 ppbv during CNY and 0.97 ± 0.76 ppbv after CNY. The lockdown during & after CNY reduced ~31% of ambient HONO along with ~62% of NO and ~36% of NO2 compared with those before CNY after the improvement of diffusion ability had been taken into consideration. Heterogeneous reaction of NO2 on ground surface dominated the nocturnal HONO sources, followed by heterogeneous reaction on aerosol surface, vehicle emission, reaction between NO and OH and emission from soil on pollution days throughout the observation. Except for elevated soil emission, other nighttime HONO sources and sinks decreased significantly during & after CNY. The relative importance of heterogeneous reaction of NO2 on surfaces further increased because of both the decrease in vehicle emission and the increase in the heterogeneous conversion kinetics from NO2 to HONO during & after CNY.


Assuntos
Poluição do Ar , Infecções por Coronavirus , Ácido Nitroso , Pandemias , Pneumonia Viral , Poluição do Ar/análise , Aniversários e Eventos Especiais , Atmosfera , Betacoronavirus , COVID-19 , Radical Hidroxila , SARS-CoV-2
20.
Huan Jing Ke Xue ; 40(11): 4755-4763, 2019 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854540

RESUMO

The mass concentration and chemical composition of fine particles were continuously observed on-line from October 31 to December 3, 2018 at Hebei Key Laboratory of Haze Pollution Prevention and Control in Shijiazhuang. The characteristics of haze pollution in autumn and winter in Shijiazhuang were analyzed. The results showed that during the observation period, four haze pollution episodes occurred with PM2.5 as the primary pollutant, and the maximum daily concentration was 154, 228, 379, and 223 µg·m-3, respectively, reaching a heavy pollution level or above. The main components of PM2.5were water-soluble inorganic ions (WSⅡ) and carbon-containing aerosols, accounting for (60.7±15.6)% and (21.6±9.7)% of PM2.5 mass concentration, respectively. Compared with clean days, the mass concentration of WSⅡ and carbon aerosol during haze pollution increased by 4.4 times and 3.1 times, respectively, which was the main cause of haze pollution. NO3-, SO42-, and NH4+(SNA) were the main components of WSⅡ, accounting for (91.5±17.3)% of the total WSⅡ concentration, of which NO3- took up the highest proportion. The explosive growth of SNA during haze pollution was the main reason for the extremely high PM2.5concentration. Under non-high humidity conditions, the formation rates of unit mass substrates (NO3-, SO42-) were not significantly different, but the transformation of SO42- was significantly promoted after the liquid phase oxidation of SO2 was triggered under high humidity conditions. The atmosphere in Shijiazhuang is rich in NH3, and the molar ratio of n(NH4+) to n(NO3-+2×SO42-) in PM2.5 was greater than 1. The presence of a large amount of NH3 could promote the transformation of NO3- and SO42- and aggravate pollution. During the haze pollution period, the accumulation of primary pollutants from coal and motor vehicles was the main reason for the increase in carbon-containing aerosol. Compared with clean days, the formation of SOC was inhibited. Before the beginning of the warm season, the mobile form was the main pollution source of PM2.5, contributing 30.8% and 39.8% of PM2.5 mass concentration. With the increase of coal combustion emissions, the contribution of coal-fired sources gradually increased to 25.5%, becoming the primary pollution source.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...