Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202411889, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39086010

RESUMO

The stereochemistry of shape-persistent molecular cages, particularly those resembling prisms, exerts significant influence on their application-specific functionalities. Although methods exist for fabricating inherently chiral prism-like cages, strategies for catalytic asymmetric synthesis of these structures in a diversity-oriented fashion remain unexplored. Herein, we introduce an unprecedented organocatalytic desymmetrization approach for the generation of inherently chiral prism-like cages via phosphonium-containing foldamer-catalyzed SNAr reactions. This methodology establishes a topological connection, enabling the facile assembly of a wide range of versatile stereogenic-at-cage building blocks possessing two highly modifiable groups. Furthermore, subsequent stereospecific transformations of the remaining chlorides and/or ethers afford convenient access to numerous functionally relevant chiral-at-cage molecules.

2.
Org Lett ; 24(48): 8907-8913, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36421405

RESUMO

Sulfonamide is a common motif in medicines and agrochemicals. Typically, this class of functional groups is prepared by reacting amines with sulfonyl chlorides that are presynthesized from nitro compounds and thiols, respectively. Here, we report a novel strategy that directly couples nitro compounds and thiols to form sulfonamides atom- and redox-economically. Mechanistic studies suggest our reaction proceeds via direct photoexcitation of nitroarenes that eventually transfers the oxygen atoms from the nitro group to the thiol unit.

3.
Angew Chem Int Ed Engl ; 61(34): e202206961, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35696352

RESUMO

The first carbene-catalyzed asymmetric chemoselective cross silyl benzoin (Brook-Benzoin) reaction has been developed. Key steps of this reaction involve activation of the carbon-silicon bond of an acylsilane by a chiral N-heterocyclic carbene (NHC) catalyst to form a silyl acyl anion intermediate. These acyl anions then undergo an addition reaction with indole aldehydes in a highly chemo- and enantioselective manner to afford α-silyloxy ketones with excellent optical purities. The reaction mechanism of this cross Brook-Benzoin reaction was investigated through both experimental and computational methods. The chiral α-hydroxy ketone derivatives obtained by this approach show promising, agrochemically interesting activity against harmful plant bacteria.


Assuntos
Benzoína , Metano , Benzoína/química , Catálise , Cetonas/química , Metano/análogos & derivados , Metano/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA