Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3778, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355694

RESUMO

Novel paradigms of strong ergodicity breaking have recently attracted significant attention in condensed matter physics. Understanding the exact conditions required for their emergence or breakdown not only sheds more light on thermalization and its absence in closed quantum many-body systems, but it also has potential benefits for applications in quantum information technology. A case of particular interest is many-body localization whose conditions are not yet fully settled. Here, we prove that spin chains symmetric under a combination of mirror and spin-flip symmetries and with a non-degenerate spectrum show finite spin transport at zero total magnetization and infinite temperature. We demonstrate this numerically using two prominent examples: the Stark many-body localization system (Stark-MBL) and the symmetrized many-body localization system (symmetrized-MBL). We provide evidence of delocalization at all energy densities and show that delocalization persists when the symmetry is broken. We use our results to construct two localized systems which, when coupled, delocalize each other. Our work demonstrates the dramatic effect symmetries can have on disordered systems, proves that the existence of exact resonances is not a sufficient condition for delocalization, and opens the door to generalization to higher spatial dimensions and different conservation laws.


Assuntos
Generalização Psicológica , Ciência da Informação , Tecnologia da Informação , Física , Temperatura
2.
Phys Rev Lett ; 117(17): 170404, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27824446

RESUMO

It is commonly believed that quantum isolated systems satisfying the eigenstate thermalization hypothesis (ETH) are diffusive. We show that this assumption is too restrictive since there are systems that are asymptotically in a thermal state yet exhibit anomalous, subdiffusive thermalization. We show that such systems satisfy a modified version of the ETH ansatz and derive a general connection between the scaling of the variance of the off-diagonal matrix elements of local operators, written in the eigenbasis of the Hamiltonian, and the dynamical exponent. We find that for subdiffusively thermalizing systems the variance scales more slowly with system size than expected for diffusive systems. We corroborate our findings by numerically studying the distribution of the coefficients of the eigenfunctions and the off-diagonal matrix elements of local operators of the random field Heisenberg chain, which has anomalous transport in its thermal phase. Surprisingly, this system also has non-Gaussian distributions of the eigenfunctions, thus, directly violating Berry's conjecture.

3.
Phys Rev Lett ; 114(10): 100601, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25815917

RESUMO

We study the infinite temperature dynamics of a prototypical one-dimensional system expected to exhibit many-body localization. Using numerically exact methods, we establish the dynamical phase diagram of this system based on the statistics of its eigenvalues and its dynamical behavior. We show that the nonergodic phase is reentrant as a function of the interaction strength, illustrating that localization can be reinforced by sufficiently strong interactions even at infinite temperature. Surprisingly, within the accessible time range, the ergodic phase shows subdiffusive behavior, suggesting that the diffusion coefficient vanishes throughout much of the phase diagram in the thermodynamic limit. Our findings strongly suggest that Wigner-Dyson statistics of eigenvalue spacings may appear in a class of ergodic but subdiffusive systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...