Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 15(3): 5574-5579, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33591720

RESUMO

When an electron passes through a chiral molecule, there is a high probability for correlation between the momentum and spin of the charge, thus leading to a spin polarized current. This phenomenon is known as the chiral-induced spin selectivity (CISS) effect. One of the most surprising experimental results recently demonstrated is that magnetization reversal in a ferromagnet with perpendicular anisotropy can be realized solely by chemisorbing a chiral molecular monolayer without applying any current or external magnetic field. This result raises the currently open question of whether this effect is due to the bonding event, held by the ferromagnet, or a long-time-scale effect stabilized by exchange interactions. In this work we have performed vectorial magnetic field measurements of the magnetization reorientation of a ferromagnetic layer exhibiting perpendicular anisotropy due to CISS using nitrogen-vacancy centers in diamond and followed the time dynamics of this effect. In parallel, we have measured the molecular monolayer tilt angle in order to find a correlation between the time dependence of the magnetization reorientation and the change of the tilt angle of the molecular monolayer. We have identified that changes in the magnetization direction correspond to changes of the molecular monolayer tilt angle, providing evidence for a long-time-scale characteristic of the induced magnetization reorientation. This suggests that the CISS effect has an effect over long time scales which we attribute to exchange interactions. These results offer significant insights into the fundamental processes underlying the CISS effect, contributing to the implementation of CISS in state-of-the-art applications such as spintronic and magnetic memory devices.

2.
Phys Rev Lett ; 120(6): 060405, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29481244

RESUMO

It was recently demonstrated that bulk nuclear polarization can be obtained using nitrogen vacancy (NV) color centers in diamonds, even at ambient conditions. This is based on the optical polarization of the NV electron spin, and using several polarization transfer methods. One such method is the nuclear orientation via electron spin locking (NOVEL) sequence, where a spin-locked sequence is applied on the NV spin, with a microwave power equal to the nuclear precession frequency. This was performed at relatively high fields, to allow for both polarization transfer and noise decoupling. As a result, this scheme requires accurate magnetic field alignment in order preserve the NV properties. Such a requirement may be undesired or impractical in many practical scenarios. Here we present a new sequence, termed the refocused NOVEL, which can be used for polarization transfer (and detection) even at low fields. Numerical simulations are performed, taking into account both the spin Hamiltonian and spin decoherence, and we show that, under realistic parameters, it can outperform the NOVEL sequence.

3.
Nat Nanotechnol ; 10(10): 859-64, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26258549

RESUMO

Optically detected magnetic resonance using nitrogen-vacancy (NV) colour centres in diamond is a leading modality for nanoscale magnetic field imaging, as it provides single electron spin sensitivity, three-dimensional resolution better than 1 nm (ref. 5) and applicability to a wide range of physical and biological samples under ambient conditions. To date, however, NV-diamond magnetic imaging has been performed using 'real-space' techniques, which are either limited by optical diffraction to ∼250 nm resolution or require slow, point-by-point scanning for nanoscale resolution, for example, using an atomic force microscope, magnetic tip, or super-resolution optical imaging. Here, we introduce an alternative technique of Fourier magnetic imaging using NV-diamond. In analogy with conventional magnetic resonance imaging (MRI), we employ pulsed magnetic field gradients to phase-encode spatial information on NV electronic spins in wavenumber or 'k-space' followed by a fast Fourier transform to yield real-space images with nanoscale resolution, wide field of view and compressed sensing speed-up.

4.
Phys Rev Lett ; 114(1): 017601, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25615501

RESUMO

We report on the noise spectrum experienced by few nanometer deep nitrogen-vacancy centers in diamond as a function of depth, surface coating, magnetic field and temperature. Analysis reveals a double-Lorentzian noise spectrum consistent with a surface electronic spin bath in the low frequency regime, along with a faster noise source attributed to surface-modified phononic coupling. These results shed new light on the mechanisms responsible for surface noise affecting shallow spins at semiconductor interfaces, and suggests possible directions for further studies. We demonstrate dynamical decoupling from the surface noise, paving the way to applications ranging from nanoscale NMR to quantum networks.


Assuntos
Diamante/química , Modelos Teóricos , Análise Espectral/métodos , Eletrônica , Nanotecnologia/métodos , Nitrogênio/química , Razão Sinal-Ruído
5.
Nat Commun ; 4: 1743, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23612284

RESUMO

Solid-state spin systems such as nitrogen-vacancy colour centres in diamond are promising for applications of quantum information, sensing and metrology. However, a key challenge for such solid-state systems is to realize a spin coherence time that is much longer than the time for quantum spin manipulation protocols. Here we demonstrate an improvement of more than two orders of magnitude in the spin coherence time (T2) of nitrogen-vacancy centres compared with previous measurements: T2≈0.6 s at 77 K. We employed dynamical decoupling pulse sequences to suppress nitrogen-vacancy spin decoherence, and found that T2 is limited to approximately half of the longitudinal spin relaxation time over a wide range of temperatures, which we attribute to phonon-induced decoherence. Our results apply to ensembles of nitrogen-vacancy spins, and thus could advance quantum sensing, enable squeezing and many-body entanglement, and open a path to simulating driven, interaction-dominated quantum many-body Hamiltonians.

6.
Phys Rev Lett ; 110(15): 157601, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-25167312

RESUMO

Under ambient conditions, spin impurities in solid-state systems are found in thermally mixed states and are optically "dark"; i.e., the spin states cannot be optically controlled. Nitrogen-vacancy (NV) centers in diamond are an exception in that the electronic spin states are "bright"; i.e., they can be polarized by optical pumping, coherently manipulated with spin-resonance techniques, and read out optically, all at room temperature. Here we demonstrate a scheme to resonantly couple bright NV electronic spins to dark substitutional-nitrogen (P1) electronic spins by dressing their spin states with oscillating magnetic fields. This resonant coupling mechanism can be used to transfer spin polarization from NV spins to nearby dark spins and could be used to cool a mesoscopic bath of dark spins to near-zero temperature, thus providing a resource for quantum information and sensing, and aiding studies of quantum effects in many-body spin systems.

7.
Nat Commun ; 3: 858, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22617298

RESUMO

Multi-qubit systems are crucial for the advancement and application of quantum science. Such systems require maintaining long coherence times while increasing the number of qubits available for coherent manipulation. For solid-state spin systems, qubit coherence is closely related to fundamental questions of many-body spin dynamics. Here we apply a coherent spectroscopic technique to characterize the dynamics of the composite solid-state spin environment of nitrogen-vacancy colour centres in room temperature diamond. We identify a possible new mechanism in diamond for suppression of electronic spin-bath dynamics in the presence of a nuclear spin bath of sufficient concentration. This suppression enhances the efficacy of dynamical decoupling techniques, resulting in increased coherence times for multi-spin-qubit systems, thus paving the way for applications in quantum information, sensing and metrology.

8.
Nature ; 480(7376): 219-23, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22139418

RESUMO

Historically, the completeness of quantum theory has been questioned using the concept of bipartite continuous-variable entanglement. The non-classical correlations (entanglement) between the two subsystems imply that the observables of one subsystem are determined by the measurement choice on the other, regardless of the distance between the subsystems. Nowadays, continuous-variable entanglement is regarded as an essential resource, allowing for quantum enhanced measurement resolution, the realization of quantum teleportation and quantum memories, or the demonstration of the Einstein-Podolsky-Rosen paradox. These applications rely on techniques to manipulate and detect coherences of quantum fields, the quadratures. Whereas in optics coherent homodyne detection of quadratures is a standard technique, for massive particles a corresponding method was missing. Here we report the realization of an atomic analogue to homodyne detection for the measurement of matter-wave quadratures. The application of this technique to a quantum state produced by spin-changing collisions in a Bose-Einstein condensate reveals continuous-variable entanglement, as well as the twin-atom character of the state. Our results provide a rare example of continuous-variable entanglement of massive particles. The direct detection of atomic quadratures has applications not only in experimental quantum atom optics, but also for the measurement of fields in many-body systems of massive particles.

9.
Phys Rev Lett ; 101(1): 010404, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18764094

RESUMO

In a Bose-Einstein condensate, the excitation of a Bogoliubov phonon with low momentum (e.g., by a two-photon Bragg process) is strongly suppressed due to destructive interference between two indistinguishable excitation pathways. Here we show that scattering of this sound excitation into a double-momentum mode is strongly enhanced due to constructive interference. This enhancement yields an inherent amplification of second-order sound excitations of the condensate, as we confirm experimentally. We further show that due to parity considerations, this effect is extended to higher-order excitations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...