Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biomedicines ; 12(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275417

RESUMO

Studying primordial events in cancer is pivotal for identifying predictive molecular indicators and for targeted intervention. While the involvement of G-protein-coupled receptors (GPCRs) in cancer is growing, GPCR-based therapies are yet rare. Here, we demonstrate the overexpression of protease-activated receptor 2 (PAR2), a GPCR member in the fallopian tubes (FTs) of high-risk BRCA carriers as compared to null in healthy tissues of FT. FTs, the origin of ovarian cancer, are known to express genes of serous tubal intraepithelial carcinoma (STICs), a precursor lesion of high-grade serous carcinoma (HGSC). PAR2 expression in FTs may serve as an early prediction sensor for ovarian cancer. We show now that knocking down Par2 inhibits ovarian cancer peritoneal dissemination in vivo, pointing to the central role of PAR2. Previously we identified pleckstrin homology (PH) binding domains within PAR1,2&4 as critical sites for cancer-growth. These motifs associate with PH-signal proteins via launching a discrete signaling network in cancer. Subsequently, we selected a compound from a library of backbone cyclic peptides generated toward the PAR PH binding motif, namely the lead compound, Pc(4-4). Pc(4-4) binds to the PAR PH binding domain and blocks the association of PH-signal proteins, such as Akt or Etk/Bmx with PAR2. It attenuates PAR2 oncogenic activity. The potent inhibitory function of Pc(4-4) is demonstrated via inhibition of ovarian cancer peritoneal spread in mice. While the detection of PAR2 may serve as a predictor for ovarian cancer, the novel Pc(4-4) compound may serve as a powerful medicament in STICs and ovarian cancer. This is the first demonstration of the involvement of PAR PH binding motif signaling in ovarian cancer and Pc(4-4) as a potential therapy treatment.

3.
FASEB J ; 37(1): e22675, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36468684

RESUMO

Post-translational modification of G-protein coupled receptors (GPCRs) plays a central role in tissue hemostasis and cancer. The molecular mechanism of post-translational regulation of protease-activated receptors (PARs), a subgroup of GPCRs is yet understudied. Here we show that the cell-surface transmembrane E3 ubiquitin ligase ring finger 43 (RNF43) is a negative feedback regulator of PAR2 , impacting PAR2 -induced signaling and colon cancer growth. RNF43 co-associates with PAR2 , promoting its membrane elimination and degradation as shown by reduced cell surface biotinylated PAR2 levels and polyubiquitination. PAR2 degradation is rescued by R-spondin2 in the presence of leucine-rich repeat-containing G-protein-coupled receptor5 (LGR5). In fact, PAR2 acts jointly with LGR5, as recapitulated by increased ß-catenin levels, transcriptional activity, phospho-LRP6, and anchorage-independent colony growth in agar. Animal models of the chemically induced AOM/DSS colon cancer of wt versus Par2/f2rl1 KO mice as also the 'spleen-liver' colon cancer metastasis, allocated a central role for PAR2 in colon cancer growth and development. RNF43 is abundantly expressed in the Par2/f2rl1 KO-treated AOM/DSS colon tissues while its level is very low to nearly null in colon cancer adenocarcinomas of the wt mice. The same result is obtained in the 'spleen-liver' model of spleen-inoculated cells, metastasized to the liver. High RNF43 expression is observed in the liver upon shRNA -Par2 silencing. "Limited-dilution-assay" performed in mice in-vivo, assigned PAR2 as a member of the cancer stem cell niche compartment. Collectively, we elucidate an original regulation of PAR2 oncogene, a member of cancer stem cells, by RNF43 ubiquitin ligase. It impacts ß-catenin signaling and colon cancer growth.


Assuntos
Neoplasias do Colo , Receptor PAR-2 , Camundongos , Animais , Receptor PAR-2/genética , beta Catenina/genética , Células-Tronco Neoplásicas
4.
Mol Cancer Ther ; 21(9): 1415-1429, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36066448

RESUMO

While the role of G-protein-coupled receptors (GPCR) in cancer is acknowledged, their underlying signaling pathways are understudied. Protease-activated receptors (PAR), a subgroup of GPCRs, form a family of four members (PAR1-4) centrally involved in epithelial malignancies. PAR4 emerges as a potent oncogene, capable of inducing tumor generation. Here, we demonstrate identification of a pleckstrin-homology (PH)-binding motif within PAR4, critical for colon cancer growth. In addition to PH-Akt/PKB association, other PH-containing signal proteins such as Gab1 and Sos1 also associate with PAR4. Point mutations are in the C-tail of PAR4 PH-binding domain; F347 L and D349A, but not E346A, abrogate these associations. Pc(4-4), a lead backbone cyclic peptide, was selected out of a mini-library, directed toward PAR2&4 PH-binding motifs. It effectively attenuates PAR2&4-Akt/PKB associations; PAR4 instigated Matrigel invasion and migration in vitro and tumor development in vivo. EGFR/erbB is among the most prominent cancer targets. AYPGKF peptide ligand activation of PAR4 induces EGF receptor (EGFR) Tyr-phosphorylation, effectively inhibited by Pc(4-4). The presence of PAR2 and PAR4 in biopsies of aggressive breast and colon cancer tissue specimens is demonstrated. We propose that Pc(4-4) may serve as a powerful drug not only toward PAR-expressing tumors but also for treating EGFR/erbB-expressing tumors in cases of resistance to traditional therapies. Overall, our studies are expected to allocate new targets for cancer therapy. Pc(4-4) may become a promising candidate for future therapeutic cancer treatment.


Assuntos
Neoplasias do Colo , Receptores de Trombina , Proteínas Sanguíneas , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Desenho de Fármacos , Receptores ErbB/genética , Humanos , Oncogenes , Fosfoproteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Trombina/genética , Receptores de Trombina/metabolismo
5.
Int J Mol Sci ; 23(15)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35955891

RESUMO

G-protein-coupled receptors (GPCRs) are involved in a wide array of physiological and disease functions, yet knowledge of their role in colon cancer stem cell maintenance is still lacking. In addition, the molecular mechanisms underlying GPCR-induced post-translational signaling regulation are poorly understood. Here, we find that protease-activated receptor 4 (PAR4) unexpectedly acts as a potent oncogene, inducing ß-catenin stability and transcriptional activity. Both PAR4 and PAR2 are able to drive the association of methyltransferase EZH2 with ß-catenin, culminating in ß-catenin methylation. This methylation on a lysine residue at the N-terminal portion of ß-catenin suppresses the ubiquitination of ß-catenin, thereby promoting PAR-induced ß-catenin stability and transcriptional activity. Indeed, EZH2 is found to be directly correlated with high PAR4-driven tumors, and is abundantly expressed in large tumors, whereas very little to almost none is expressed in small tumors. A truncated form of ß-catenin, ∆N133ß-catenin, devoid of lysine, as well as serine/threonine residues, exhibits low levels of ß-catenin and a markedly reduced transcriptional activity following PAR4 activation, in contrast to wt ß-catenin. Our study demonstrates the importance of ß-catenin lysine methylation in terms of its sustained expression and function. Taken together, we reveal that PAR-induced post-transcriptional regulation of ß-catenin is centrally involved in colon cancer.


Assuntos
Neoplasias do Colo , beta Catenina , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Lisina , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , beta Catenina/genética , beta Catenina/metabolismo
6.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445691

RESUMO

The essential role of G-protein coupled receptors (GPCRs) in tumor growth is recognized, yet a GPCR based drug in cancer is rare. Understanding the molecular path of a tumor driver gene may lead to the design and development of an effective drug. For example, in members of protease-activated receptor (PAR) family (e.g., PAR1 and PAR2), a novel PH-binding motif is allocated as critical for tumor growth. Animal models have indicated the generation of large tumors in the presence of PAR1 or PAR2 oncogenes. These tumors showed effective inhibition when the PH-binding motif was either modified or were inhibited by a specific inhibitor targeted to the PH-binding motif. In the second part of the review we discuss several aspects of some cardinal GPCRs in tumor angiogenesis.


Assuntos
Neoplasias/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Ativados por Proteinase/metabolismo , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/fisiopatologia , Domínios de Homologia à Plecstrina/genética , Domínios de Homologia à Plecstrina/fisiologia , Domínios Proteicos/genética , Domínios Proteicos/fisiologia , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Receptores Ativados por Proteinase/genética , Transdução de Sinais/fisiologia
7.
FASEB J ; 34(12): 15701-15717, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33136328

RESUMO

While the involvement of protease-activated receptors (PARs) in the physiological regulation of human placenta development, as in tumor biology, is recognized, the molecular pathway is unknown. We evaluated the impact of PAR1 and PAR2 function in cytotrophoblast (CTB) proliferation and invasion in a system of extravillous trophoblast (EVT) organ culture and in human cell-lines. Activation of PAR1 - and PAR2 -induced EVT invasion and proliferation, while the shRNA silencing of low-density lipoprotein receptor-related protein 5/6 (LRP5/6) inhibited these processes. PAR1 and PAR2 effectively induce ß-catenin stabilization in a manner similar to that shown for the canonical ß-catenin stabilization pathway yet independent of Wnts. Immunoprecipitation analyses and protein-protein docking demonstrated the co-association between either PAR1 or PAR2 with LRP5/6 forming an axis of PAR-LRP5/6-Axin. Noticeably, in PAR1 -PAR2 heterodimers a dominant role is assigned to PAR2 over PAR1 as shown by inhibition of PAR1 -induced ß-catenin levels, and Dvl nuclear localization. This inhibition takes place either by shRNA silenced hPar2 or in the presence of a TrPAR2 devoid its cytoplasmic tail. Indeed, TrPAR2 cannot form the PAR1 -PAR2 complex, obstructing thereby the flow of signals downstream. Elucidation of the mechanism of PAR-induced invasion contributes to therapeutic options highlighting key partners in the process.


Assuntos
Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Placenta/metabolismo , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Linhagem Celular , Células Cultivadas , Citoplasma/metabolismo , Feminino , Células HEK293 , Humanos , Placentação/fisiologia , Gravidez , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/fisiologia , Trofoblastos/metabolismo , beta Catenina/metabolismo
8.
Int J Mol Sci ; 19(11)2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400241

RESUMO

G protein-coupled receptors (GPCRs), the largest family of cell receptors, act as important regulators of diverse signaling pathways. Our understanding of the impact of GPCRs in tumors is emerging, yet there is no therapeutic platform based on GPCR driver genes. As cancer progresses, it disrupts normal epithelial organization and maintains the cells outside their normal niche. The dynamic and flexible microenvironment of a tumor contains both soluble and matrix-immobilized proteases that contribute to the process of cancer advancement. An example is the activation of cell surface protease-activated receptors (PARs). Mammalian PARs are a subgroup of GPCRs that form a family of four members, PAR1⁻4, which are uniquely activated by proteases found in the microenvironment. PAR1 and PAR2 play central roles in tumor biology, and PAR3 acts as a coreceptor. The significance of PAR4 in neoplasia is just beginning to emerge. PAR1 has been shown to be overexpressed in malignant epithelia, in direct correlation with tumor aggressiveness, but there is no expression in normal epithelium. In this review, the involvement of key transcription factors such as Egr1, p53, Twist, AP2, and Sp1 that control PAR1 expression levels specifically, as well as hormone transcriptional regulation by both estrogen receptors (ER) and androgen receptors (AR) are discussed. The cloning of the human protease-activated receptor 2; Par2 (hPar2) promoter region and transcriptional regulation of estrogen (E2) via binding of the E2⁻ER complex to estrogen response elements (ERE) are shown. In addition, evidence that TEA domain 4 (TEAD4) motifs are present within the hPar2 promoter is presented since the YAP oncogene, which plays a central part in tumor etiology, acts via the TEAD4 transcription factor. As of now, no information is available on regulation of the hPar3 promoter. With regard to hPar4, only data showing CpG methylation promoter regulation is available. Characterization of the PAR transcriptional landscape may identify powerful targets for cancer therapies.


Assuntos
Células Epiteliais/patologia , Neoplasias/genética , Neoplasias/patologia , Animais , Sequência de Bases , Humanos , Regiões Promotoras Genéticas , Receptores Ativados por Proteinase/genética , Receptores Ativados por Proteinase/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
9.
Cancer Metastasis Rev ; 37(1): 197, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29260351

RESUMO

The original version of this article unfortunately contained a mistake. The family name of Beatrice Uziely was mistakenly spelled as Uzieky. The correct name is now presented above.

10.
Cancer Metastasis Rev ; 37(1): 147-157, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29222765

RESUMO

G protein-coupled receptors (GPCRs) comprise the main signal-transmitting components in the cell membrane. Over the past several years, biochemical and structural analyses have immensely enhanced our knowledge of GPCR involvement in health and disease states. The present review focuses on GPCRs that are cancer drivers, involved in tumor growth and development. Our aim is to highlight the involvement of stabilized ß-catenin molecular machinery with a specific array of GPCRs. We discuss recent advances in understanding the molecular path leading to ß-catenin nuclear localization and transcriptional activity and their implications for future cancer therapy research.


Assuntos
Neoplasias/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , beta Catenina/metabolismo , Animais , Endotelinas/metabolismo , Via de Sinalização Hippo , Humanos , Neoplasias/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Transporte Proteico , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Prostaglandina/metabolismo , Transdução de Sinais , Transcrição Gênica , Via de Sinalização Wnt
11.
Oncotarget ; 8(24): 38650-38667, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28418856

RESUMO

Protease-activated receptor-2 (PAR2) plays a central role in cancer; however, the molecular machinery of PAR2-instigated tumors remains to be elucidated. We show that PAR2 is a potent inducer of ß-catenin stabilization, a core process in cancer biology, leading to its transcriptional activity. Novel association of low-density lipoprotein-related protein 6 (LRP6), a known coreceptor of Frizzleds (Fz), with PAR2 takes place following PAR2 activation. The association between PAR2 and LRP6 was demonstrated employing co-immunoprecipitation, bioluminescence resonance energy transfer (BRET), and confocal microscopy analysis. The association was further supported by ZDOCK protein-protein server. PAR2-LRP6 interaction promotes rapid phosphorylation of LRP6, which results in the recruitment of Axin. Confocal microscopy of PAR2-driven mammary gland tumors in vivo, as well as in vitro confirms the association between PAR2 and LRP6. Indeed, shRNA silencing of LRP6 potently inhibits PAR2-induced ß-catenin stabilization, demonstrating its critical role in the induced path. We have previously shown a novel link between protease-activated receptor-1 (PAR1) and ß-catenin stabilization, both in a transgenic (tg) mouse model with overexpression of human PAR1 (hPar1) in the mammary glands, and in cancer epithelial cell lines. Unlike in PAR1-Gα13 axis, both Gα12 and Gα13 are equally involved in PAR2-induced ß-catenin stabilization. Disheveled (DVL) is translocated to the cell nucleus through the DVL-PDZ domain. Collectively, our data demonstrate a novel PAR2-LRP6-Axin interaction as a key axis of PAR2-induced ß-catenin stabilization in cancer. This newly described axis enhances our understanding of cancer biology, and opens new avenues for future development of anti-cancer therapies.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Receptores Acoplados a Proteínas G/metabolismo , beta Catenina/química , Sequência de Aminoácidos , Apoptose , Proteína Axina/genética , Proteína Axina/metabolismo , Biomarcadores Tumorais/genética , Proliferação de Células , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/antagonistas & inibidores , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Neoplasias/genética , Fosforilação , Conformação Proteica , RNA Interferente Pequeno/genética , Receptor PAR-2 , Receptores Acoplados a Proteínas G/genética , Homologia de Sequência , Transdução de Sinais , Células Tumorais Cultivadas , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
13.
Int J Mol Sci ; 17(8)2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27529230

RESUMO

Despite the fact that G protein-coupled receptors (GPCRs) are the largest signal-conveying receptor family and mediate many physiological processes, their role in tumor biology is underappreciated. Numerous lines of evidence now associate GPCRs and their downstream signaling targets in cancer growth and development. Indeed, GPCRs control many features of tumorigenesis, including immune cell-mediated functions, proliferation, invasion and survival at the secondary site. Technological advances have further substantiated GPCR modifications in human tumors. Among these are point mutations, gene overexpression, GPCR silencing by promoter methylation and the number of gene copies. At this point, it is imperative to elucidate specific signaling pathways of "cancer driver" GPCRs. Emerging data on GPCR biology point to functional selectivity and "biased agonism"; hence, there is a diminishing enthusiasm for the concept of "one drug per GPCR target" and increasing interest in the identification of several drug options. Therefore, determining the appropriate context-dependent conformation of a functional GPCR as well as the contribution of GPCR alterations to cancer development remain significant challenges for the discovery of dominant cancer genes and the development of targeted therapeutics.


Assuntos
Neoplasias/metabolismo , Animais , Humanos , Neoplasias/patologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia
14.
Eur J Obstet Gynecol Reprod Biol ; 185: 13-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25496845

RESUMO

BACKGROUND: Recurrent pregnancy loss (RPL) has been associated with impaired maternal-fetal communication. Protease-activated-receptor 1 (PAR1) is critical for trophoblast invasion and establishment unrelated to its role in vascular biology. OBJECTIVES: To analyze whether polymorphisms of PAR1 [-1426C/T], [-506I/D], and/or IVS[-14A/T] are associated with unexplained RPL. PATIENTS/METHODS: A case-control pilot study conducted in 39 healthy women with history of unexplained RPL and 98 women with a full-term, uncomplicated deliveries and no history of RPL. RESULTS: Women with RPL were significantly more likely to be heterozygous for [-1426C/T] (12.8% versus 3.2%; p=0.049); the heterozygous state for IVS[-14A/T] was also more common (15.4% versus 4.4%; p=0.064). There was no difference between groups for [-506I/D] genotypes. The functional consequence for [-1426C/T] and IVS[-14A/T] polymorphisms is underscored by the markedly low PAR1 mRNA levels in those women. Bioinformatics indicate generation of a new consensus motif for repressor Kruppel-like factor 3 (KLF3) in [-1426T]. Moreover, chromatin immunoprecipitation (ChIP) analysis confirmed a physical association between KLF3 protein and the hPar1 DNA obtained from women with the [-1426C/T] polymorphism. CONCLUSIONS: We hypothesize that the significantly low PAR1 levels impact placenta establishment and consequently pregnancy outcome, thereby profiling a novel risk factor for unexplained RPL.


Assuntos
Aborto Habitual/genética , Receptor PAR-1/genética , Aborto Habitual/metabolismo , Adulto , Sequência de Bases , Estudos de Casos e Controles , Feminino , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Dados de Sequência Molecular , Projetos Piloto , Polimorfismo Genético , Gravidez
15.
Cell Mol Life Sci ; 71(13): 2517-33, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24177339

RESUMO

Mammalian protease-activated-receptor-1 and -2 (PAR1 and PAR2) are activated by proteases found in the flexible microenvironment of a tumor and play a central role in breast cancer. We propose in the present study that PAR1 and PAR2 act together as a functional unit during malignant and physiological invasion processes. This notion is supported by assessing pro-tumor functions in the presence of short hairpin; shRNA knocked-down hPar2 or by the use of a truncated PAR2 devoid of the entire cytoplasmic tail. Silencing of hPar2 by shRNA-attenuated thrombin induced PAR1 signaling as recapitulated by inhibiting the assembly of Etk/Bmx or Akt onto PAR1-C-tail, by thrombin-instigated colony formation and invasion. Strikingly, shRNA-hPar2 also inhibited the TFLLRN selective PAR1 pro-tumor functions. In addition, while evaluating the physiological invasion process of placenta extravillous trophoblast (EVT) organ culture, we observed inhibition of both thrombin or the selective PAR1 ligand; TFLLRNPNDK induced EVT invasion by shRNA-hPar2 but not by scrambled shRNA-hPar2. In parallel, when a truncated PAR2 was utilized in a xenograft mouse model, it inhibited PAR1-PAR2-driven tumor growth in vivo. Similarly, it also attenuated the interaction of Etk/Bmx with the PAR1-C-tail in vitro and decreased markedly selective PAR1-induced Matrigel invasion. Confocal images demonstrated co-localization of PAR1 and PAR2 in HEK293T cells over-expressing YFP-hPar2 and HA-hPar1. Co-immuno-precipitation analyses revealed PAR1-PAR2 complex formation but no PAR1-CXCR4 complex was formed. Taken together, our observations show that PAR1 and PAR2 act as a functional unit in tumor development and placenta-uterus interactions. This conclusion may have significant consequences on future breast cancer therapeutic modalities and improved late pregnancy outcome.


Assuntos
Neoplasias da Mama/genética , Receptor PAR-1/genética , Receptor PAR-2/genética , Microambiente Tumoral/genética , Animais , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Oligopeptídeos/metabolismo , Gravidez , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Receptores CXCR4/genética , Ensaios Antitumorais Modelo de Xenoenxerto
16.
FASEB J ; 26(5): 2031-42, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22291441

RESUMO

A pivotal role is attributed to the estrogen-receptor (ER) pathway in mediating the effect of estrogen in breast cancer progression. Yet the precise mechanisms of cancer development by estrogen remain poorly understood. Advancing tumor categorization a step forward, and identifying cellular gene fingerprints to accompany histopathological assessment may provide targets for therapy as well as vehicles for evaluating the response to treatment. We report here that in breast carcinoma, estrogen may induce tumor development by eliciting protease-activated receptor-1 (PAR(1)) gene expression. Induction of PAR(1) was shown by electrophoretic mobility shift assay, luciferase reporter gene driven by the hPar(1) promoter, and chromatin-immunoprecipitation analyses. Functional estrogen regulation of hPar1 in breast cancer was demonstrated by an endothelial tube-forming network. Notably, tissue-microarray analyses from an established cohort of women diagnosed with invasive breast carcinoma exhibited a significantly shorter disease-free (P=0.006) and overall (P=0.02) survival of patients that were positive for ER and PAR(1), compared to ER-positive but PAR(1)-negative patients. We propose that estrogen transcriptionally regulates hPar(1), culminating in an aggressive gene imprint in breast cancer. While ER(+) patients are traditionally treated with hormone therapy, the presence of PAR(1) identifies a group of patients that requires additional treatment, such as anti-PAR(1) biological vehicles or chemotherapy.


Assuntos
Neoplasias da Mama/metabolismo , Estrogênios/fisiologia , Regulação da Expressão Gênica/fisiologia , Receptor PAR-1/genética , Sequência de Bases , Neoplasias da Mama/patologia , Imunoprecipitação da Cromatina , Estudos de Coortes , DNA , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas
17.
IUBMB Life ; 63(6): 397-402, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21557443

RESUMO

Protease-activated receptor 1 (PAR(1)) is the first and prototype member of an established PAR family comprising four members. The role of PAR(1) in tumor biology has been established, and is characterized by a consistent direct correlation between overexpression of its levels and epithelial tumor aggressiveness. We have found that high expression of the human Par(1) (hPar(1)) gene in epithelial tumors is controlled largely at the transcriptional level. This led us to assign Egr-1, a transcription activator, as an inducer of hPar(1), and p53, a tumor suppressor gene, as an inhibitor, both acting to achieve fine tuning of hPar(1) in prostate carcinoma. High PAR(1) levels maintain prosurvival signals in tumor cells while silencing or ablation of the gene induce apoptosis. Studies of our hPar(1) transgenic mice, which overexpress hPar(1) in the mammary glands, revealed a novel PAR(1)-induced ß-catenin stabilization function. The components connecting PAR(1) to ß-catenin stabilization have been determined, assigning at first G(α)(13) as a selective immediate component. The PAR(1)-G(α) (13) axis recruits disheveled (DVL), an upstream signaling partner of the canonical Wnt signaling pathway. Silencing of DVL by siRNA-DVL potently abrogates PAR(1)-induced ß-catenin stabilization, demonstrating its critical role in the process. We, thus, propose that transcriptional regulation of hPar(1) gene over expression in epithelia malignancies initiates a novel signaling pathway, directly connecting to ß-catenin stabilization, a core event in both tumorigenesis and developmental processes.


Assuntos
Regulação da Expressão Gênica , Neoplasias Epiteliais e Glandulares/metabolismo , Receptor PAR-1/metabolismo , Transdução de Sinais/fisiologia , Transcrição Gênica , Animais , Apoptose/fisiologia , Progressão da Doença , Humanos , Neoplasias Epiteliais e Glandulares/fisiopatologia , Receptor PAR-1/genética
18.
Patholog Res Int ; 2011: 178265, 2011 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-21318117

RESUMO

Taking the issue of tumor categorization a step forward and establish molecular imprints to accompany histopathological assessment is a challenging task. This is important since often patients with similar clinical and pathological tumors may respond differently to a given treatment. Protease-activated receptor-(1) (PAR(1)), a G protein-coupled receptor (GPCR), is the first member of the mammalian PAR family consisting of four genes. PAR(1) and PAR(2) play a central role in breast cancer. The release of N-terminal peptides during activation and the exposure of a cryptic internal ligand in PARs, endow these receptors with the opportunity to serve as a "mirror-image" index reflecting the level of cell surface PAR(1&2)-in body fluids. It is possible to use the levels of PAR-released peptide in patients and accordingly determine the choice of treatment. We have both identified PAR(1) C-tail as a scaffold site for the immobilization of signaling partners, and the critical minimal binding site. This binding region may be used for future therapeutic modalities in breast cancer, since abrogation of the binding inhibits PAR(1) induced breast cancer. Altogether, both PAR(1) and PAR(2) may serve as molecular probes for breast cancer diagnosis and valuable targets for therapy.

19.
PLoS One ; 5(6): e11135, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20559570

RESUMO

BACKGROUND: While protease-activated-receptor 1 (PAR(1)) plays a central role in tumor progression, little is known about the cell signaling involved. METHODOLOGY/PRINCIPAL FINDINGS: We show here the impact of PAR(1) cellular activities using both an orthotopic mouse mammary xenograft and a colorectal-liver metastasis model in vivo, with biochemical analyses in vitro. Large and highly vascularized tumors were generated by cells over-expressing wt hPar1, Y397Z hPar1, with persistent signaling, or Y381A hPar1 mutant constructs. In contrast, cells over-expressing the truncated form of hPar1, which lacks the cytoplasmic tail, developed small or no tumors, similar to cells expressing empty vector or control untreated cells. Antibody array membranes revealed essential hPar1 partners including Etk/Bmx and Shc. PAR(1) activation induces Etk/Bmx and Shc binding to the receptor C-tail to form a complex. Y/A mutations in the PAR(1) C-tail did not prevent Shc-PAR(1) association, but enhanced the number of liver metastases compared with the already increased metastases obtained with wt hPar1. We found that Etk/Bmx first binds via the PH domain to a region of seven residues, located between C378-S384 in PAR(1) C-tail, enabling subsequent Shc association. Importantly, expression of the hPar1-7A mutant form (substituted A, residues 378-384), which is incapable of binding Etk/Bmx, resulted in inhibition of invasion through Matrigel-coated membranes. Similarly, knocking down Etk/Bmx inhibited PAR(1)-induced MDA-MB-435 cell migration. In addition, intact spheroid morphogenesis of MCF10A cells is markedly disrupted by the ectopic expression of wt hPar1. In contrast, the forced expression of the hPar1-7A mutant results in normal ball-shaped spheroids. Thus, by preventing binding of Etk/Bmx to PAR(1) -C-tail, hPar1 oncogenic properties are abrogated. CONCLUSIONS/SIGNIFICANCE: This is the first demonstration that a cytoplasmic portion of the PAR(1) C-tail functions as a scaffold site. We identify here essential signaling partners, determine the hierarchy of binding and provide a platform for therapeutic vehicles via definition of the critical PAR(1)-associating region in the breast cancer signaling niche.


Assuntos
Neoplasias da Mama/patologia , Proteínas Tirosina Quinases/fisiologia , Receptor PAR-1/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Sequência de Bases , Biópsia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Primers do DNA , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/secundário , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Metástase Neoplásica , Receptor PAR-1/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
J Biol Chem ; 285(20): 15137-15148, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20223821

RESUMO

We have previously shown a novel link between hPar-1 (human protease-activated receptor-1) and beta-catenin stabilization. Although it is well recognized that Wnt signaling leads to beta-catenin accumulation, the role of PAR1 in the process is unknown. We provide here evidence that PAR1 induces beta-catenin stabilization independent of Wnt, Fz (Frizzled), and the co-receptor LRP5/6 (low density lipoprotein-related protein 5/6) and identify selective mediators of the PAR1-beta-catenin axis. Immunohistological analyses of hPar1-transgenic (TG) mouse mammary tissues show the expression of both Galpha(12) and Galpha(13) compared with age-matched control counterparts. However, only Galpha(13) was found to be actively involved in PAR1-induced beta-catenin stabilization. Indeed, a dominant negative form of Galpha(13) inhibited both PAR1-induced Matrigel invasion and Lef/Tcf (lymphoid enhancer factor/T cell factor) transcription activity. PAR1-Galpha(13) association is followed by the recruitment of DVL (Dishevelled), an upstream Wnt signaling protein via the DIX domain. Small interfering RNA-Dvl silencing leads to a reduction in PAR1-induced Matrigel invasion, inhibition of Lef/Tcf transcription activity, and decreased beta-catenin accumulation. It is of note that PAR1 also promotes the binding of beta-arrestin-2 to DVL, suggesting a role for beta-arrestin-2 in PAR1-induced DVL phosphorylation dynamics. Although infection of small interfering RNA-LRP5/6 or the use of the Wnt antagonists, SFRP2 (soluble Frizzled-related protein 2) or SFRP5 potently reduced Wnt3A-mediated beta-catenin accumulation, no effect was observed on PAR1-induced beta-catenin stabilization. Collectively, our data show that PAR1 mediates beta-catenin stabilization independent of Wnt. We propose here a novel cascade of PAR1-induced Galpha(13)-DVL axis in cancer and beta-catenin stabilization.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Fosfoproteínas/metabolismo , Receptor PAR-1/metabolismo , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Arrestinas/metabolismo , Linhagem Celular , Proteínas Desgrenhadas , Inativação Gênica , Humanos , Imunoprecipitação , Camundongos , Camundongos Transgênicos , Fosfoproteínas/genética , beta-Arrestina 2 , beta-Arrestinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...