Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 12(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054493

RESUMO

Spaceflight may cause hypogravitational motor syndrome (HMS). However, the role of the nervous system in the formation of HMS remains poorly understood. The aim of this study was to estimate the effects of space flights on the cytoskeleton of the neuronal and glial cells in the spinal cord and mechanoreceptors in the toes of thick-toed geckos (Chondrodactylus turneri GRAY, 1864). Thick-toed geckos are able to maintain attachment and natural locomotion in weightlessness. Different types of mechanoreceptors have been described in the toes of geckos. After flight, neurofilament 200 immunoreactivity in mechanoreceptors was lower than in control. In some motor neurons of flight geckos, nonspecific pathomorphological changes were observed, but they were also detected in the control. No signs of gliosis were detected after spaceflight. Cytoskeleton markers adequately reflect changes in the cells of the nervous system. We suggest that geckos' adhesion is controlled by the nervous system. Our study revealed no significant disturbances in the morphology of the spinal cord after the prolonged space flight, supporting the hypothesis that geckos compensate the alterations, characteristic for other mammals in weightlessness, by tactile stimulation.

2.
Acta Histochem ; 121(5): 638-645, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31146895

RESUMO

In the human pancreas, various forms of endocrine cell arrangement are found: single endocrine cells, endocrine cell clusters, and mantel, bipolar and mosaic cell (mixed) islets. Our aim was to analyse the distribution and dynamics of insulin-, glucagon- and somatostatin-containing cells within the various forms of endocrine pancreas arrangement during human prenatal development and in adults and to suggest a mechanism of change in the endocrine cell ratio in adult islets. Pancreatic autopsies derived from human foetuses from the 10th to the 40th weeks of development and from adults were examined using histological, immunohistochemical and morphometric methods. During development, the human endocrine pancreas undergoes not only de novo differentiation of endocrine cells and islet formation, but morphogenetic restructuring, which is revealed as a change of the α-, ß- and δ-cell ratio in the islets. In particular, increased proportion of glucagon- and somatostatin-containing cells and decreased proportion of ß-cells were shown in the largest mosaic islets in adults. Our results indicate that the distribution and proportion of α-, ß- and δ-cells depend on the islets size and vascularisation. Studying of the mechanism of such restructuring may contribute to the development of new approaches in the treatment of diabetes mellitus.


Assuntos
Células Secretoras de Glucagon/citologia , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/embriologia , Pâncreas/citologia , Células Secretoras de Somatostatina/citologia , Desenvolvimento Embrionário , Humanos
3.
Early Hum Dev ; 117: 44-49, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29275072

RESUMO

BACKGROUND: Expression of the intermediate filament protein vimentin has been recently observed in the pancreatic islet ß- and α-cells of humans with type 2 diabetes mellitus. It was suggested that the presence of vimentin in endocrine cells may indicate islet tissue renewal, or potentially represent the dedifferentiation of endocrine cells, which could contribute to the onset of type 2 diabetes or islet cell dysfunction. AIM: To analyze the expression of vimentin in pancreatic ß- and α-cells of macrosomic infants of diabetic and nondiabetic mothers. SUBJECTS: Pancreatic samples of five macrosomic infants (gestational age 34-40weeks) from three diabetic and two nondiabetic mothers were compared to six control infants (32-40weeks, weight appropriate for gestational age) from normoglycemic mothers. METHODS: Pancreatic autopsy samples were examined by double immunofluorescent labeling with antibodies against vimentin and either insulin or glucagon. Alterations in the endocrine pancreas were measured using morphometric methods, then data were statistically analyzed. RESULTS: In the pancreatic islets of macrosomic infants from diabetic and nondiabetic mothers, we observed vimentin-positive cells, some of which simultaneously contained insulin or glucagon. We also quantitatively showed that the presence of such cells was associated with hypertrophy and hyperplasia of the islets, and with an increase in ß- and α-cell density. CONCLUSIONS: We speculate that the appearance of vimentin-positive islet cells may reflect induction of differentiation in response to the increased insulin demand, and vimentin may serve as an early marker of endocrine pancreas disorders.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Macrossomia Fetal/metabolismo , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Gravidez em Diabéticas/metabolismo , Vimentina/metabolismo , Adulto , Biomarcadores/metabolismo , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/patologia , Feminino , Macrossomia Fetal/patologia , Humanos , Recém-Nascido , Masculino , Gravidez , Gravidez em Diabéticas/patologia
4.
Tissue Cell ; 48(6): 567-576, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27823763

RESUMO

In the pancreas of many mammals including humans, endocrine islet cells can be integrated with the nervous system components into neuro-insular complexes. The mechanism of the formation of such complexes is not clearly understood. The present study evaluated the interactions between the nervous system components, epithelial cells and endocrine cells in the human pancreas. Foetal pancreas, gestational age 19-23 weeks (13 cases) and 30-34 weeks (7 cases), were studied using double immunohistochemical labeling with neural markers (S100 protein and beta III tubulin), epithelial marker (cytokeratin 19 (CK19)) and antibodies to insulin and glucagon. We first analyse the structure of neuro-insular complexes using confocal microscopy and provide immunohistochemical evidences of the presence of endocrine cells within the ganglia or inside the nerve bundles. We showed that the nervous system components contact with the epithelial cells located in ducts or in clusters outside the ductal epithelium and form complexes with separate epithelial cells. We observed CK19-positive cells inside the ganglia and nerve bundles which were located separately or were integrated with the islets. Therefore, we conclude that neuro-insular complexes may forms as a result of integration between epithelial cells and nervous system components at the initial stages of islets formation.


Assuntos
Células Endócrinas/metabolismo , Células Epiteliais/metabolismo , Sistema Nervoso/metabolismo , Pâncreas/metabolismo , Feto , Gânglios/crescimento & desenvolvimento , Gânglios/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Glucagon/biossíntese , Humanos , Insulina/biossíntese , Queratina-19/biossíntese , Sistema Nervoso/crescimento & desenvolvimento , Pâncreas/embriologia , Pâncreas/crescimento & desenvolvimento , Proteínas S100/biossíntese , Tubulina (Proteína)/biossíntese
5.
Artigo em Inglês | MEDLINE | ID: mdl-24795697

RESUMO

The ontogeny of the neuro-insular complexes (NIC) and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used double-staining with antibodies specific to pan-neural markers [neuron-specific enolase (NSE) and S100 protein] and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw) 10 onward. Later the density of S100 and NSE-positive fibers increased. In adults, this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onward. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained NIC and the number of these complexes was reduced in adults. The highest density of NIC is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA