Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(10): 4390-4398, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37154763

RESUMO

Photocatalysts for seawater splitting are severely restricted because of the presence of multiple types of ions in seawater that cause corrosion and deactivation. As a result, new materials that promote adsorption of H+ and hinder competing adsorption of metal cations should enhance utilization of photogenerated electrons on the catalyst surface for efficient H2 production. One strategy to design advanced photocatalysts involves introduction of hierarchical porous structures that enable fast mass transfer and creation of defect sites that promote selective hydrogen ion adsorption. Herein, we used a facile calcination method to fabricate the macro-mesoporous C3N4 derivative, VN-HCN, that contains multiple nitrogen vacancies. We demonstrated that VN-HCN has enhanced corrosion resistance and elevated photocatalytic H2 production performance in seawater. Experimental results and theoretical calculations reveal that enhanced mass and carrier transfer and selective adsorption of hydrogen ions are key features of VN-HCN that lead to its high seawater splitting activity.

2.
ACS Appl Mater Interfaces ; 15(4): 5620-5627, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36690332

RESUMO

Nanoporous metals possess unique properties attributed to their high surface area and interconnected nanoscale ligaments. They are mostly fabricated by wet synthetic methods that are not universal to various metals and not free from impurities due to solution-based etching processes. Here, we demonstrate that the plasma treatment of metal nanoparticles formed by physical vapor deposition is a general route to form such films with many metals including the non-noble ones. The resultant nanoporous metallic films are free of impurities and possess highly curved ligaments and nanopores. The metal films are ultrathin, yet remarkably robust and very well connected, and thus are highly promising for various applications such as transparent conducting electrodes.

3.
Chemistry ; 29(18): e202203662, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36598845

RESUMO

CdS nanoparticles were introduced on E. coli cells to construct a hydrogen generating biohybrid system via the biointerface of tannic acid-Fe complex. This hybrid system promotes good biological activity in a high salinity environment. Under light illumination, the as-synthesized biohybrid system achieves a 32.44 % enhancement of hydrogen production in seawater through a synergistic effect.


Assuntos
Escherichia coli , Nanopartículas , Semicondutores , Hidrogênio
4.
Eur Phys J E Soft Matter ; 44(6): 74, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34076781

RESUMO

Externally controlled microswimmers offer prospects for transport in biological research and medical applications. This requires biocompatibility of the swimmers and the possibility to tailor their propulsion mechanisms to the respective low Reynolds number environment. Here, we incorporate low amounts of the biocompatible alloy of iron and platinum (FePt) in its [Formula: see text] phase in microstructures by a versatile one-step physical vapor deposition process. We show that the hard magnetic properties of [Formula: see text] FePt are beneficial for the propulsion of helical micropropellers with rotating magnetic fields. Finally, we find that the FePt coatings are catalytically active and also make for Janus microswimmers that can be light-actuated and magnetically guided.

5.
ACS Nano ; 15(4): 5861-5875, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33830726

RESUMO

Nanoparticles possess exceptional optical, magnetic, electrical, and chemical properties. Several applications, ranging from surfaces for optical displays and electronic devices, to energy conversion, require large-area patterns of nanoparticles. Often, it is crucial to maintain a defined arrangement and spacing between nanoparticles to obtain a consistent and uniform surface response. In the majority of the established patterning methods, the pattern is written and formed, which is slow and not scalable. Some parallel techniques, forming all points of the pattern simultaneously, have therefore emerged. These methods can be used to quickly assemble nanoparticles and nanostructures on large-area substrates into well-ordered patterns. Here, we review these parallel methods, the materials that have been processed by them, and the types of particles that can be used with each method. We also emphasize the maximal substrate areas that each method can pattern and the distances between particles. Finally, we point out the advantages and disadvantages of each method, as well as the challenges that still need to be addressed to enable facile, on-demand large-area nanopatterning.

6.
Dev Neurobiol ; 80(9-10): 305-315, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31228876

RESUMO

Tissue and neural engineering for various regenerative therapies are rapidly growing fields. Of major interest is studying the complex interface between cells and various 3D structures by scanning electron microscopy with focused ion beam. Notwithstanding its unrivaled resolution, the optimal fixation, dehydration, and staining protocols of the samples while preserving the complex cell interface in its natural form, are highly challenging. The aim of this work was to compare and optimize staining and sample drying procedures in order to preserve the cells in their "life-like state" for studying the cell interface with either 3D well-like structures or gold-coated mushroom-shaped electrodes. The process involved chemical fixation using a combination of glutaraldehyde and formaldehyde, followed by gentle drying techniques in which we compared four methods: (critical point drying, hexamethyldisiloxane, repeats of osmium tetroxide-thiocarbohydrazide [OTOTO], and resin) in order to determine the method that best preserves the cell and cell interface morphology. Finally, to visualize the intracellular organelles and membrane, we compared the efficacy of four staining techniques: osmium tetroxide, osmium tetroxide and salts, osmium and uranyl acetate, and OTOTO. Experiments were performed on embryonic stem cell-derived photoreceptor precursors, neural cells, and a human retinal pigment epithelial cell line, which revealed that the optimal processing combination was resin drying and OTOTO staining, as manifested by preservation of cell morphology, the lowest percentage of cellular protrusion breakage as well as a high-quality image. The obtained results pave the way for better understanding the cell interface with various structures for enhancing various biomedical applications.


Assuntos
Células-Tronco Embrionárias/ultraestrutura , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Varredura/métodos , Epitélio Pigmentado da Retina/ultraestrutura , Animais , Linhagem Celular , Células Cultivadas , Células-Tronco Embrionárias/química , Células-Tronco Embrionárias/efeitos dos fármacos , Humanos , Camundongos , Tetróxido de Ósmio/administração & dosagem , Tetróxido de Ósmio/análise , Epitélio Pigmentado da Retina/química , Epitélio Pigmentado da Retina/efeitos dos fármacos
7.
ACS Comb Sci ; 20(6): 366-376, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29718654

RESUMO

In this work, we describe the formation of a reduced bandgap CeNiO3 phase, which, to our knowledge, has not been previously reported, and we show how it is utilized as an absorber layer in a photovoltaic cell. The CeNiO3 phase is prepared by a combinatorial materials science approach, where a library containing a continuous compositional spread of Ce xNi1- xO y is formed by pulsed laser deposition (PLD); a method that has not been used in the past to form Ce-Ni-O materials. The library displays a reduced bandgap throughout, calculated to be 1.48-1.77 eV, compared to the starting materials, CeO2 and NiO, which each have a bandgap of ∼3.3 eV. The materials library is further analyzed by X-ray diffraction to determine a new crystalline phase. By searching and comparing to the Materials Project database, the reduced bandgap CeNiO3 phase is realized. The CeNiO3 reduced bandgap phase is implemented as the absorber layer in a solar cell and photovoltages up to 550 mV are achieved. The solar cells are also measured by surface photovoltage spectroscopy, which shows that the source of the photovoltaic activity is the reduced bandgap CeNiO3 phase, making it a viable material for solar energy.


Assuntos
Ligas/química , Cério/química , Níquel/química , Óxidos/química , Cor , Técnicas de Química Combinatória/métodos , Bases de Dados Factuais , Lasers , Processos Fotoquímicos , Bibliotecas de Moléculas Pequenas/química , Energia Solar , Propriedades de Superfície
8.
ACS Comb Sci ; 19(12): 755-762, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29120164

RESUMO

Data mining tools have been known to be useful for analyzing large material data sets generated by high-throughput methods. Typically, the descriptors used for the analysis are structural descriptors, which can be difficult to obtain and to tune according to the results of the analysis. In this Research Article, we show the use of deposition process parameters as descriptors for analysis of a photovoltaics data set. To create a data set, solar cell libraries were fabricated using iron oxide as the absorber layer deposited using different deposition parameters, and the photovoltaic performance was measured. The data was then used to build models using genetic programing and stepwise regression. These models showed which deposition parameters should be used to get photovoltaic cells with higher performance. The iron oxide library fabricated based on the model predictions showed a higher performance than any of the previous libraries, which demonstrates that deposition process parameters can be used to model photovoltaic performance and lead to higher performing cells. This is a promising technique toward using data mining tools for discovery and fabrication of high performance photovoltaic materials.


Assuntos
Mineração de Dados/métodos , Fontes de Energia Elétrica , Compostos Férricos/química , Energia Solar , Adsorção , Fenômenos Físicos , Termodinâmica
9.
Phys Chem Chem Phys ; 18(2): 781-91, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26625981

RESUMO

In the current work, pristine α-Fe2O3 metal oxide was doped with Mg in an attempt to modulate its electronic properties. To this end, we employed an experimental high throughput strategy, including scanning XRD and optical spectroscopy, which were complimented by atomistic density functional theory (DFT) calculations. The combined study reveals that at Mg/Fe atomic ratios up to ∼1/3, the bandgaps of the hematite-Mg composite materials are similar to that of the pure material. The observed bandgaps are rationalized by electronic band structure and density of states calculations. Additional rationale for the similar bandgaps in pure and doped hematite is provided by topological Bader charge analyses, which indicate that the Mg and Fe ions in the hematite matrix have similar partial atomic charges. Nonetheless, the small charge density difference between the Mg and Fe ions induces a slight spin polarization on both oxygen and Fe ions, resulting in changes in the band edges. Further charge density analyses, using charge density maps and chemical-bonding analyses with the crystal orbital Hamiltonian population scheme, indicate that Mg forms ionic bonds with the neighboring oxygen atoms. This change from iron-oxygen covalent bonds to a more ionic nature for magnesium-oxygen bonds is probably responsible for the reduction observed in the computed bulk modulus of α-Mg(0.17)Fe(1.83)O3 (193 GPa) compared to α-Fe2O3 (202 GPa).

10.
ACS Comb Sci ; 17(4): 209-16, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25798538

RESUMO

Pulsed laser deposition (PLD) is widely used in combinatorial material science, as it enables rapid fabrication of different composite materials. Nevertheless, this method was usually limited to small substrates, since PLD deposition on large substrate areas results in severe lateral inhomogeneity. A few technical solutions for this problem have been suggested, including the use of different designs of masks, which were meant to prevent inhomogeneity in the thickness, density, and oxidation state of a layer, while only the composition is allowed to be changed. In this study, a possible way to take advantage of the large scale deposition inhomogeneity is demonstrated, choosing an iron oxide PLD-deposited library with continuous compositional spread (CCS) as a model system. An Fe2O3-Nb2O5 library was fabricated using PLD, without any mask between the targets and the substrate. The library was measured using high-throughput scanners for electrical, structural, and optical properties. A decrease in electrical resistivity that is several orders of magnitude lower than pure α-Fe2O3 was achieved at ∼20% Nb-O (measured at 47 and 267 °C) but only at points that are distanced from the center of the PLD plasma plume. Using hierarchical clustering analysis, we show that the PLD inhomogeneity can be used as an additional degree of freedom, helping, in this case, to achieve iron oxide with much lower resistivity.


Assuntos
Técnicas de Química Combinatória , Compostos de Ferro/química , Lasers , Teste de Materiais/instrumentação , Teste de Materiais/métodos , Bibliotecas de Moléculas Pequenas
11.
Mol Inform ; 34(6-7): 367-79, 2015 06.
Artigo em Inglês | MEDLINE | ID: mdl-27490383

RESUMO

Growth in energy demands, coupled with the need for clean energy, are likely to make solar cells an important part of future energy resources. In particular, cells entirely made of metal oxides (MOs) have the potential to provide clean and affordable energy if their power conversion efficiencies are improved. Such improvements require the development of new MOs which could benefit from combining combinatorial material sciences for producing solar cells libraries with data mining tools to direct synthesis efforts. In this work we developed a data mining workflow and applied it to the analysis of two recently reported solar cell libraries based on Titanium and Copper oxides. Our results demonstrate that QSAR models with good prediction statistics for multiple solar cells properties could be developed and that these models highlight important factors affecting these properties in accord with experimental findings. The resulting models are therefore suitable for designing better solar cells.


Assuntos
Mineração de Dados/métodos , Aprendizado de Máquina , Metais/química , Modelos Teóricos , Óxidos/química , Energia Solar
12.
ACS Comb Sci ; 16(2): 53-65, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24410367

RESUMO

All-oxide-based photovoltaics (PVs) encompass the potential for extremely low cost solar cells, provided they can obtain an order of magnitude improvement in their power conversion efficiencies. To achieve this goal, we perform a combinatorial materials study of metal oxide based light absorbers, charge transporters, junctions between them, and PV devices. Here we report the development of a combinatorial internal quantum efficiency (IQE) method. IQE measures the efficiency associated with the charge separation and collection processes, and thus is a proxy for PV activity of materials once placed into devices, discarding optical properties that cause uncontrolled light harvesting. The IQE is supported by high-throughput techniques for bandgap fitting, composition analysis, and thickness mapping, which are also crucial parameters for the combinatorial investigation cycle of photovoltaics. As a model system we use a library of 169 solar cells with a varying thickness of sprayed titanium dioxide (TiO2) as the window layer, and covarying thickness and composition of binary compounds of copper oxides (Cu-O) as the light absorber, fabricated by Pulsed Laser Deposition (PLD). The analysis on the combinatorial devices shows the correlation between compositions and bandgap, and their effect on PV activity within several device configurations. The analysis suggests that the presence of Cu4O3 plays a significant role in the PV activity of binary Cu-O compounds.


Assuntos
Técnicas de Química Combinatória/métodos , Cobre/química , Lasers , Processos Fotoquímicos , Teoria Quântica , Óxidos/química
13.
J Phys Chem Lett ; 4(17): 2822-8, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-26706647

RESUMO

In photoelectrochemical cells, one major recombination pathway involves a reaction between the photogenerated electrons that diffuse inside the semiconductor electrode and holes, in the form of oxidized ions, which travel in the electrolyte to the counter electrode. Here we present direct imaging of the recombination/reduction sites in two types of porous TiO2 electrodes, P25 and submicrometer particles, chosen for studying the influence of the TiO2 particles' sizes and shapes on the recombination sites. The sites were labeled with 2-5 nm silver particles, electrodeposited on the TiO2 surface using chronoamperometry. The model assumes that reduction and recombination are similar with respect to the electron transfer from the TiO2 surface to an ionic electron acceptor in the electrolyte redox mediator/Ag(+) ion. Consequently the metal deposit marks the reaction locations. This first high-resolution view clearly identifies the connecting points between TiO2 particles and then the {101} facets as the sites of recombination.

14.
J Phys Chem Lett ; 3(24): 3755-64, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-26291107

RESUMO

Recently, a new field in photovoltaics (PV) has emerged, focusing on solar cells that are entirely based on metal oxide semiconductors. The all-oxide PV approach is very attractive due to the chemical stability, nontoxicity, and abundance of many metal oxides that potentially allow manufacturing under ambient conditions. Already today, metal oxides (MOs) are widely used as components in PV cells such as transparent conducting front electrodes or electron-transport layers, while only very few MOs have been used as light absorbers. In this Perspective, we review recent developments of all-oxide PV systems, which until today were mostly based on Cu2O as an absorber. Furthermore, ferroelectric BiFeO3-based PV systems are discussed, which have recently attracted considerable attention. The performance of all-oxide PV cells is discussed in terms of general PV principles, and directions for progress are proposed, pointing toward the development of novel metal oxide semiconductors using combinatorial methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...