Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 189(12): 649, 2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-29178008

RESUMO

The objective of this research is to characterize the variability of trace metals in the Rio Santa watershed based on synoptic sampling applied at a large scale. To that end, we propose a combination of methods based on the collection of water, suspended sediments, and riverbed sediments at different points of the watershed within a very limited period. Forty points within the Rio Santa watershed were sampled between June 21 and July 8, 2013. Forty water samples, 36 suspended sediments, and 34 riverbed sediments were analyzed for seven trace metals. The results, which were normalized using the USEPA guideline for water and sediments, show that the Rio Santa water exhibits Mn concentrations higher than the guideline at more than 50% of the sampling points. As is the second highest contaminating element in the water, with approximately 10% of the samples containing concentrations above the guideline. Sediments collected in the Rio Santa riverbed were heavily contaminated by at least four of the tested elements at nearly 85% of the sample points, with As presenting the highest normalized concentration, at more than ten times the guideline. As, Cd, Fe, Pb, and Zn present similar concentration trends in the sediment all along the Rio Santa.The findings indicate that care should be taken in using the Rio Santa water and sediments for purposes that could affect the health of humans or the ecosystem. The situation is worse in some tributaries in the southern part of the watershed that host both active and abandoned mines and ore-processing plants.


Assuntos
Sedimentos Geológicos/química , Metais Pesados/análise , Poluentes Químicos da Água/análise , Ecossistema , Monitoramento Ambiental/métodos , Camada de Gelo , Mineração , Peru
2.
Ground Water ; 55(2): 160-170, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27576019

RESUMO

Quantifying groundwater flow at seepage faces is crucial because seepage faces influence the hydroecology and water budgets of watersheds, lakes, rivers and oceans, and because measuring groundwater fluxes directly in aquifers is extremely difficult. Seepage faces provide a direct and measurable groundwater flux but there is no existing method to quantitatively image groundwater processes at this boundary. Our objective is to determine the possibilities and limitations of thermal imagery in quantifying groundwater discharge from discrete seeps. We developed a conceptual model of temperature below discrete seeps, observed 20 seeps spectacularly exposed in three dimensions at an unused limestone quarry and conducted field experiments to examine the role of diurnal changes and rock face heterogeneity on thermal imagery. The conceptual model suggests that convective air-water heat exchange driven by temperature differences is the dominant heat transfer mechanism. Thermal imagery is effective at locating and characterizing the flux of groundwater seeps. Areas of active groundwater flow and ice growth can be identified from thermal images in the winter, and seepage rates can be differentiated in the summer. However, the application of thermal imagery is limited by diverse factors including technical issues of image acquisition, diurnal changes in radiation and temperature, and rock face heterogeneity. Groundwater discharge rates could not be directly quantified from thermal imagery using our observations but our conceptual model and experiments suggest that thermal imagery could quantify groundwater discharge when there are large temperature differences, simple cliff faces, non-freezing conditions, and no solar radiation.


Assuntos
Água Subterrânea , Movimentos da Água , Lagos , Oceanos e Mares , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...