Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 32(31): 313001, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32163928

RESUMO

Heusler-type magnetic shape memory alloys (MSMAs) exhibit a martensitic transformation (MT) accompanied by a complex magnetic reordering, strongly affected by an intricate martensitic microstructure. The hierarchic twin structure of martensite, formed as a result of minimization of elastic energy down to atomic scale, is under intensive study nowadays. On the other hand, the much more sophisticated problem of the relationship between nanoscale twin structure and the magnetism in MSMAs has being tackled only recently. It will be shown in this topical review that the nanotwin structure affects not only the basic magnetic parameters of MSMAs, but also can change qualitatively its magnetic nature and related magnetodynamic and magnetoresistance properties. This will be primarily illustrated, both theoretically and experimentally, on the prototype Ni-Mn-Ga and Ni(Co)-Mn-Sn MSMAs in the form of epitaxial thin films, but the conclusions are also valid for other Heusler-type MSMAs, both in the form of thin films, ribbons and bulk single crystals and polycrystals. The following new and remarkable phenomena will be highlighted. (i) A strong ferromagnetic exchange coupling is observed between the submicron twin components in Ni-Mn-Ga ferromagnetic martensite. It results in the modification of the average magnetic anisotropy and the formation of a non-collinear magnetic structure, whereby a negative magnetoresistance appears in a wide temperature range. (ii) Weak antiferromagnetic coupling occurs between the ferromagnetically ordered twin components in Ni(Co)-Mn-Sn martensite. This coupling enabled to explain the exchange bias and magnetic resonance spectra in the same terms as for artificial antiferromagnetically coupled multilayered structures.

2.
Sci Rep ; 8(1): 15730, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30356122

RESUMO

Magnetic shape memory alloys are under intensive investigation due to their unusual physical properties, such as magnetic shape memory effect, magnetic field induced superelasticity, direct and inverse magnetocaloric effect etc., promising for novel applications. One of the intriguing properties of these materials in a single phase state is a giant magnetoresistance. Here we report the remarkable results about the magnetoresistive properties of epitaxial films of Ni52.3Mn26.8Ga20.9 magnetic shape memory alloy in the temperature range of 100-370 K, well below the martensitic transformation temperature. It was found that the formation of non-collinear magnetic structure due to a nanotwinning of the film results in electron scattering on such a structure and noticeable negative magnetoresistance in the entire investigated temperature range.

3.
Phys Rev Lett ; 119(15): 155701, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29077463

RESUMO

Polarized neutron scattering has been used to obtain the magnetic moment at specific crystallographic sites of the austenitic and martensitic phases of two nonstoichiometric Ni-Mn-Ga single crystals with close composition. These alloys have been chosen because they exhibit different structures in the paramagnetic state and inverse positions of the respective martensitic transformation and Curie temperature. The diffraction analysis revealed a remarkable result: Despite the similar alloy composition, the magnetic moments of Mn are quite different for the two alloys at the same crystallographic position. Furthermore, such a difference enabled us to assess that the exchange coupling between Mn atoms switches from ferro- to antiferromagnetic at a distance between 2.92 and 3.32 Å in the martensite. These results are of great importance to guide first principles calculations that, up to now, have not been contrasted with experiments at the atomic level.

4.
Nanotechnology ; 27(17): 175302, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26984933

RESUMO

Permalloy disc structures in magnetic vortex state constitute a promising new type of magnetic nanoparticles for biomedical applications. They present high saturation magnetisation and lack of remanence, which ease the remote manipulation of the particles by magnetic fields and avoid the problem of agglomeration, respectively. Importantly, they are also endowed with the capability of low-frequency magneto-mechanical actuation. This effect has already been shown to produce cancer cell destruction using functionalized discs, about 1 µm in diameter, attached to the cell membrane. Here, Permalloy nanodiscs down to 60 nm in diameter are obtained by hole-mask colloidal lithography, which is proved to be a cost-effective method for the uniform patterning of large substrate areas, with a high production yield of nanostructures. The characterisation of the magnetic behaviour of the nanodiscs, complemented with micromagnetic simulations, confirms that they present a very well defined magnetic vortex configuration, unprecedented, to our knowledge, for nanostructures of this size prepared by a high-yield method. The successful detachment of the gold-covered nanodiscs from the substrate is also demonstrated by the use of sacrificial layers.


Assuntos
Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Polimetil Metacrilato/química , Propriedades de Superfície , Titânio/química
5.
J Phys Condens Matter ; 25(48): 484005, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24201042

RESUMO

The martensitic transformation (MT) of metamagnetic shape memory alloys is very sensitive to the applied magnetic field and atomic order. We analyze the alloy Ni50Mn34.5In15.5 in magnetic fields up to 13 T. The alloy has been prepared both in an ordered state by slow cooling, and in a disordered state by rapid quenching. In both cases the dependence of the martensitic transition temperature on the field is highly nonlinear. Such departure from linearity is due to a decrease of the entropy change at the transition, ΔS, with the applied field. This can be explained by the ordering effect of the magnetic field on the frustrated magnetic structure of the alloy in the martensitic phase. Compliance with a recent model, relying on the strong magnetoelastic interactions in these compounds, is very satisfactory.

6.
ACS Appl Mater Interfaces ; 5(21): 10912-9, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24125528

RESUMO

The effect of the bonding layer type and piezoelectric layer thickness on the magnetoelectric (ME) response of layered poly(vinylidene fluoride) (PVDF)/epoxy/Vitrovac composites is reported. Three distinct epoxy types were tested, commercially known as M-Bond, Devcon, and Stycast. The main differences among them are their different mechanical characteristics, in particular the value of the Young modulus, and the coupling with the polymer and Vitrovac (Fe39Ni39Mo4Si6B12) layers of the laminate. The laminated composites prepared with M-Bond epoxy exhibit the highest ME coupling. Experimental results also show that the ME response increases with increasing PVDF thickness, the highest ME response of 53 V·cm(-1)·Oe(-1) being obtained for a 110 µm thick PVDF/M-Bond epoxy/Vitrovac laminate. The behavior of the ME laminates with increasing temperatures up to 90 °C shows a decrease of more than 80% in the ME response of the laminate, explained by the deteriorated coupling between the different layers. A two-dimensional numerical model of the ME laminate composite based on the finite element method was used to evaluate the experimental results. A comparison between numerical and experimental data allows us to select the appropriate epoxy and to optimize the piezoelectric PVDF layer width to maximize the induced magnetoelectric voltage. The obtained results show the critical role of the bonding layer and piezoelectric layer thickness in the ME performance of laminate composites.

7.
J Nanosci Nanotechnol ; 12(9): 7496-500, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23035503

RESUMO

Magnetic [FeNi (170 nm)/Ti (6 nm)]3/Cu (L(cu) = 250 or 500 nm)/[Ti (6 nm)/FeNi (170 nm)]3 multilayers were designed with focus on high frequency applications. They were deposited onto glass or a microfluidic system compatible flexible Ciclo Olefin Copolymer substrate and comparatively tested. A maximum sensitivity for the total impedance of 110%/Oe was obtained for a driving current frequency of 30 MHz for [FeNi/Ti]3/Cu (L(cu) = 500 nm)/[Ti/FeNi]3 multilayers deposited onto a glass substrate and 45%/Oe for a driving current frequency of 65 MHz for the same multilayers deposited onto the flexible polymer substrate, a very promising result for applications. The possibility of using flexible substrate/[FeNi/Ti],/Cu/[Ti/FeNi]3 multilayers as MI pressure-sensitive elements was also demonstrated.

8.
J Phys Condens Matter ; 24(27): 276004, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22713607

RESUMO

The magnetic, magnetocaloric and thermal characteristics have been studied in a Ni(50.3)Mn(20.8)Ga(27.6)V(1.3) ferromagnetic shape memory alloy (FSMA) transforming martensitically at around 40 K. The alloy shows first a transformation from austenite to an intermediate phase and then a partial transformation to an orthorhombic martensite, all the phases being ferromagnetically ordered. The thermomagnetization dependences enabled observation of the magnetocaloric effect in the vicinity of the martensitic transformation (MT). The Debye temperature and the density of states at the Fermi level are equal to θ(D) = (276 ± 4) K and 1.3 states/atom eV , respectively, and scarcely dependent on the magnetic field. The MT exhibited by Ni-Mn-Ga FSMAs at very low temperatures is distinctive in the sense that it is accompanied by a hardly detectable entropy change as a sign of a small driving force. The enhanced stability of the cubic phase and the low driving force of the MT stem from the reduced density of states near the Fermi level.


Assuntos
Ligas/química , Gálio/química , Magnetismo , Manganês/química , Níquel/química , Teste de Materiais , Temperatura , Termodinâmica
9.
J Phys Condens Matter ; 21(1): 016002, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21817239

RESUMO

The proper annealing of Ni(51)Mn(28)Ga(21) ribbon alloy gives rise to an increase of the saturation magnetization and of the magnetic order T(C) (up to 20 K) and martensitic transition T(M) (up to 10 K) temperatures. The combined x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) studies indicate that the annealing treatment drives the alloy to a more ordered structure without significantly affecting the local structure in terms of interatomic distances and bonding geometry. By contrast, the annealing strongly affects the near-edge absorption at the Mn K-edge while no effect is observed at either the Ni or Ga K-edge. These results suggest that annealing leads to a modification of the electronic structure of the Mn atoms while that of Ni and Ga atoms remains unvaried. However, strong XMCD signals are detected at both Ni and Ga K-edges whose amplitude increases after annealing. These results point out that despite the change of the magnetic properties of the system being mainly associated with the modification of the electronic properties of the Mn atoms, both Ni and Ga may play a non-negligible role through the polarization of the conduction band.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...