Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 168, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566167

RESUMO

BACKGROUND: Mosquitoes inhabiting urban green spaces and cemeteries in Europe represent a crucial facet of public health concern and contribute to the ecological balance. As urbanization intensifies, these areas increasingly serve as vital habitats for various mosquito species, fostering breeding grounds and increasing the risk of disease transmission. METHODS: A study was conducted in the three main cities (inland, coastal, and estuarine) of the Basque Country, northern Spain, to investigate the species composition, abundance, dynamic populations, larval habitats, and host preferences of mosquitoes in urban green spaces and cemeteries. CDC traps and dipping were used to collect mosquitoes for 2 years (2019-2020). RESULTS: A total of 21 mosquito species were identified, with Culex pipiens s.l. being the most abundant and widespread. The three ecological forms of Cx. pipiens were found, and Cx. pipiens pipiens was the most common in both green areas and cemeteries. Morphological identification together with molecular tools identified 65 COI sequences with high homology. The highest species richness was found in the inland city, followed by the coastal city and the estuarine city. Mosquito abundance was significantly higher in green areas compared to cemeteries and in the coastal and estuarine cities compared to the inland city. The investigation of larval breeding sites highlighted the dominance of Cx. pipiens s.l., particularly in semi-artificial ponds, diverse water-holding containers (tyres and buckets) and drainage systems in green areas; in cemeteries, most of the larvae were found in flowerpots and funerary urns. Seasonal activity exhibited variable peaks in mosquito abundance in the different cities, with a notable increase in July or August. Additionally, blood meal analysis revealed that Cx. pipiens s.l. fed on several common urban avian species. CONCLUSIONS: Studies on mosquitoes are essential to understand their role in disease transmission and to design targeted and sustainable management strategies to mitigate the associated risks.


Assuntos
Culex , Culicidae , Animais , Espanha , Parques Recreativos , Cemitérios , Culex/anatomia & histologia , Larva
2.
Appl Environ Microbiol ; 90(3): e0220123, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38412030

RESUMO

Coxiella burnetii infection was monitored during seven kidding seasons (2017-2023) in a dairy goat herd that after an outbreak of Q fever abortions was vaccinated with an inactivated phase I vaccine. Due to the high infection rate just after the outbreak, only the replacement stock was vaccinated during the first three kidding seasons, and when the average herd immunity had decreased (fourth kidding season onwards), the whole herd was vaccinated. Vaginal swabs, feces, and milk were analyzed by PCR to monitor infection, and dust and aerosols were analyzed to measure C. burnetii environmental contamination. One year after the onset of the outbreak, a significant reduction in C. burnetii shedding loads was observed, but the percentage of shedding animals remained high until the third kidding season. By the seventh kidding season, no shedders were detected. The bacterial load excreted was significantly lower in vaccinated compared with unvaccinated animals, and in yearlings compared with multiparous. C. burnetii was detected by PCR in aerosols collected inside the animal premises throughout the study period except in the last season; whereas, aerosols collected outdoors tested negative in the last three kidding seasons. Viable C. burnetii was detectable in environmental dust collected inside the barn until the third kidding season following the outbreak. These results indicate that after an outbreak of Q fever, the risk of infection for humans and susceptible animals can remain high for at least three kidding seasons when the number of C. burnetii animal shedders is still high, even when bacterial excretion is low. IMPORTANCE: Q fever is a zoonosis distributed worldwide. Ruminants are the main reservoir, and infection can cause high rates of abortion. After entering a farm, Coxiella burnetii infection can persist in the animal population over several lambing/kidding periods. Once infection is established in a herd, vaccination with the inactivated Phase I vaccine significantly reduces bacterial shedding, but although at low levels, excretion may continue to occur for several lambing/kidding seasons. The time that C. burnetii remains viable in the farm environment after an outbreak of Q fever determines the period when risk of infection is high for the people in close contact. This work showed that this period extends at least three kidding seasons after the outbreak. These results provided valuable information on the epidemiology of C. burnetii infection in goat herds and may help to develop guidelines for controlling the disease and reducing infection risk for susceptible people and animals.


Assuntos
Coxiella burnetii , Doenças das Cabras , Febre Q , Vacinas , Gravidez , Feminino , Humanos , Animais , Ovinos , Febre Q/epidemiologia , Febre Q/prevenção & controle , Febre Q/veterinária , Estações do Ano , Cabras , Surtos de Doenças/veterinária , Vacinação/veterinária , Aerossóis , Poeira , Doenças das Cabras/epidemiologia , Doenças das Cabras/prevenção & controle , Doenças das Cabras/microbiologia
3.
Animals (Basel) ; 13(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37443873

RESUMO

The yellow-legged hornet (Vespa velutina nigrithorax), outside its natural range, has become a major threat to domestic bees. Several control methods have been used to fight against V. velutina, but the results achieved are not satisfactory. The use of protein baits with biocides has shown to be an effective method to control invasive wasp populations, but they have not been used to control V. velutina. Thus, the efficacy of protein baits containing fipronil to reduce the presence of hornets in apiaries was evaluated in this study. After laboratory determination of the optimal efficacy of a protein bait at a 0.01% concentration of fipronil, field trials were conducted involving 222 beekeepers. The data reported by the 90 beekeepers who completed the requested questionnaire demonstrated that in the groups of apiaries with the highest pressure of hornets (groups with 10-30 and >30 hornets), there was a significant decrease in the presence of V. velutina, lasting at least two weeks. The reduction in the number of hornets was positively correlated with bait consumption, and bait consumption was positively correlated with the number of hornets present at the time of treatment. Although the method used has shown good efficacy and the concentration of fipronil used was very low; possible negative effects on the environment should also be evaluated.

4.
Euro Surveill ; 28(28)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37440349

RESUMO

We describe a large Q fever outbreak reported in Spain, including 108 cases, 53 with pneumonia and 27 requiring hospitalisations. The first cases were detected in February 2021 among rock climbers visiting a cave in Bizkaia, and the last case was detected in October 2021. Most cases were notified after the Easter holiday (April-May 2021). More males (63.9%) than females (36.1%) were infected (median ages: 42 (1-68) and 39 years (6-61), respectively). We detected Coxiella burnetii by PCR in faecal, dust and/or aerosol samples taken inside the cave in March 2021, and in dust and aerosol samples collected between March 2021 and February 2023. Coxiella burnetii from dust samples were cultured on Vero cells, showing viability for 24 months. Based on serological and genotyping data, goats sheltering in the cave were the most likely source of infection. The cave was closed on 29 April 2021, movements of goats and sheep in the area were restricted (March-July 2021), and the animals were vaccinated in October 2021. Investigation of Q fever outbreaks requires a multidisciplinary One Health approach as these outbreaks can occur in unexpected places like natural sites where animals are present.


Assuntos
Coxiella burnetii , Doenças das Cabras , Febre Q , Doenças dos Ovinos , Masculino , Feminino , Chlorocebus aethiops , Ovinos , Animais , Febre Q/epidemiologia , Espanha/epidemiologia , Células Vero , Coxiella burnetii/genética , Surtos de Doenças , Cabras , Aerossóis , Poeira , Doenças das Cabras/epidemiologia , Doenças dos Ovinos/epidemiologia
5.
Parasit Vectors ; 16(1): 234, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452412

RESUMO

BACKGROUND: The expansion of invasive mosquitoes throughout Europe has increased in recent decades. In northern Spain, Aedes albopictus was detected for the first time in 2014, and Aedes japonicus was detected in the three Basque provinces in 2020. This study aimed to evaluate the distribution of these mosquito species and their association with factors related to urbanization. METHODS: In 2021, a total of 568 ovitraps were deployed in 113 sampling sites from 45 municipalities with > 10,000 inhabitants. Oviposition substrate sticks were replaced each fortnight and examined for Aedes eggs from June to November. Aedes eggs were counted, and the eggs from a selection of positive oviposition sticks, encompassing at least one stick from each positive ovitrap, were hatched following their life cycle until the adult stage. When egg hatching was not successful, PCR targeting the COI gene and sequencing of amplicons were carried out. RESULTS: Eggs were detected in 66.4% of the sampling sites and in 32.4% of the ovitraps distributed in the three provinces of the Basque Country. Aedes albopictus and Ae. japonicus were widespread in the studied area, confirming their presence in 23 and 26 municipalities, respectively. Co-occurrence of both species was observed in 11 municipalities. The analysis of the presence of Aedes invasive mosquitoes and the degree of urbanization (urban, suburban, peri-urban) revealed that Ae. albopictus showed a 4.39 times higher probability of being found in suburban areas than in peri-urban areas, whereas Ae. japonicus had a higher probability of being found in peri-urban areas. Moreover, the presence of Ae. albopictus was significantly associated with municipalities with a higher population density (mean = 2983 inh/km2), whereas Ae. japonicus was associated with lower population density (mean = 1590 inh/km2). CONCLUSIONS: The wide distribution of Ae. albopictus and Ae. japonicus observed confirmed the spread and establishment of these species in northern Spain. A new colonization area of Ae. japonicus in Europe was confirmed. Due to the potential impact of Aedes invasive mosquitoes on public health and according to our results, surveillance programs and control plans should be designed considering different urbanization gradients, types of environments, and population density.


Assuntos
Aedes , Animais , Feminino , Aedes/genética , Espanha , Europa (Continente) , Urbanização , Cidades , Mosquitos Vetores
6.
Med Vet Entomol ; 37(3): 616-629, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37134155

RESUMO

Mosquitoes (Diptera: Culicidae) are common bloodsucking Diptera frequently found in aquatic environments, which are valuable ecosystems for many animal species, particularly migrating birds. Therefore, interactions between these animal species and mosquitoes may play a critical role in pathogen transmission. During 2018-2019, mosquitoes were collected from two aquatic ecosystems in northern Spain using different methodologies and identified using classical morphology and molecular tools. A total of 1529 males and females of 22 native mosquito species (including eight new records for the region) were trapped using CO2 -baited Centers for Disease Control and Prevention (CDC) traps and sweep netting. Among the blood-fed female mosquitoes, 11 vertebrate host species-six mammals and five birds-were identified using DNA barcoding. The developmental sites of eight mosquito species were determined across nine microhabitats, and 11 mosquito species were caught landing on humans. The flight period varied among mosquito species, with some peaking in the spring and others in the summer. Our study highlights the advantages of mosquito sampling using various techniques to comprehensively characterise species composition and abundance. Information on the trophic preferences, biting behaviour and influence of climatic variables on the ecology of mosquitoes is also provided.


Assuntos
Culicidae , Masculino , Feminino , Humanos , Animais , Ecossistema , Espanha , Comportamento Alimentar , Mamíferos , Aves , Mosquitos Vetores
7.
Parasit Vectors ; 15(1): 199, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690834

RESUMO

BACKGROUND: Aquatic ecosystems provide breeding sites for blood-sucking insects such as Culicoides biting midges (Diptera: Ceratopogonidae), but factors affecting their distribution and host choice are poorly understood. A study was undertaken at two nature reserves in northern Spain to examine the abundance, species composition, population dynamics and feeding patterns of biting midges between 2018 and 2019. METHODS: Culicoides were captured by light suction traps baited with CO2 and by sweep netting vegetation. Blood meals and species identification of blood-fed specimens were determined using cytochrome c oxidase I subunit (COI) DNA barcoding. Multivariate generalized linear models were used to evaluate the associations between the abundance of Culicoides, the species richness and other parameters. RESULTS: The 4973 identified specimens comprised 28 species of Culicoides. These included two species reported for the first time in northern Spain, thus raising to 54 the number of Culicoides species described in the region. Specimens of all 28 species and 99.6% of the total specimens collected were caught in suction traps, while sweep netting vegetation revealed just 11 species and 0.4% of the total specimens. Midge abundance peaked in June/early July, with five species comprising > 80% of the captures: Culicoides alazanicus (24.9%), Culicoides griseidorsum (20.3%), Culicoides poperinghensis (16.2%), Culicoides kibunensis (10.7%) and Culicoides clastrieri (9.6%). DNA barcode analysis of blood meals from eight Culicoides species revealed that they fed on 17 vertebrate species (3 mammals and 14 birds). Species in the subgenus Avaritia were primarily ornithophilic, except for C. griseidorsum and C. poperinghensis. Host DNA from blood meals was successfully amplified from 75% of blood-fed females. A pictorial blood meal digestion scale is provided to accurately assess the blood-fed status of female Culicoides. CONCLUSIONS: The large number of different blood meal sources identified in the midges captured in this study signals the likely importance of wild birds and mammals (e.g. red deer and wild boar) as reservoir/amplifying hosts for pathogens. Available hosts are more exposed to being bitten by biting midge populations in aquatic ecosystems in late spring and early summer.


Assuntos
Ceratopogonidae , Cervos , Animais , Aves , Ceratopogonidae/genética , Ecossistema , Comportamento Alimentar , Feminino , Espanha
8.
Ticks Tick Borne Dis ; 13(4): 101961, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35490548

RESUMO

The occurrence of tick-borne pathogens (TBPs) of human and veterinary interest was studied in questing and feeding ticks collected from wild animals in a region in North-Western Spain. A total of 529 ticks (489 questing, 40 feeding) of seven different species (386 Ixodes ricinus, 53 Haemaphysalis concinna, 27 Haemaphysalis punctata, 25 Dermacentor marginatus, 21 Haemaphysalis inermis, 15 Dermacentor reticulatus, and two Rhipicephalus bursa) were analyzed. Molecular analysis of the 16S rRNA gene in I. ricinus ticks, revealed the presence of two phylogenetic groups in the region. Most of the sequenced ticks (96%) were assigned to I. ricinus haplogroup and 4% of the ticks were phylogenetically related to I. inopinatus haplogroup. Feeding ticks were removed from 17 animals from seven wild species (seven roe deer -Capreolus capreolus-, three wolves -Canis lupus-, two Iberian red deer -Cervus elaphus hispanicus-, two European wild boar -Sus scrofa-, one Cantabrian brown bear -Ursus arctos-, one Eurasian badger -Meles meles-, and one red fox -Vulpes vulpes-). Presence of Rickettsia spp., Anaplasma phagocytophilum, piroplasms, Borrelia burgdorferi sensu lato (s.l.) and Coxiella burnetii were tested in ticks by specific PCR. A total of 92 (17.4%) of the 529 ticks analyzed were positive for at least one of the TBPs tested. Sequencing revealed the presence of the genospecies "Candidatus Rickettsia rioja", Rickettsia raoultii, and Anaplasma phagocytophilum in both questing and feeding ticks. Rickettsia slovaca, Borrelia lusitaniae, Borrelia afzelii, Borrelia garinii, Borrelia burgdorferi sensu stricto and Babesia bigemina were only detected in questing ticks, while Babesia sp. badger type A, Theileria OT3 and Hepatozoon canis occurred only in engorged ticks. None of the ticks were positive for C. burnetii. The analysis of the 16S rRNA gene sequences of A. phagocytophilum revealed the presence of three variants (I, X and W) circulating in the region. New host-tick-pathogen interactions have been revealed, finding for the first time the human pathogen R. raoultii in D. reticulatus removed from a Cantabrian brown bear. Co-occurrence between different TBPs were detected in 4.3% of the ticks. The association B. burgdorferi s.l./Rickettsia spp. was detected in questing ticks; and Rickettsia spp./piroplasms and A. phagocytophilum/Theileria OT3 in feeding ticks. The presence of pathogenic agents constitutes a threat to human and animal health, and should be considered in the diagnosis and treatment after a tick bite. This study increases the knowledge on TBPs diversity of medical and veterinary interest circulating between ticks and their hosts in North-Western Spain.


Assuntos
Anaplasma phagocytophilum , Babesia , Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Borrelia , Coxiella burnetii , Cervos , Ixodes , Ixodidae , Rickettsia , Anaplasma phagocytophilum/genética , Animais , Babesia/genética , Borrelia/genética , Borrelia burgdorferi/genética , Grupo Borrelia Burgdorferi/genética , Coxiella burnetii/genética , Ixodes/microbiologia , Ixodidae/genética , Filogenia , RNA Ribossômico 16S/genética , Rickettsia/genética , Espanha/epidemiologia
9.
Vet Microbiol ; 268: 109422, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35421829

RESUMO

Coxiella burnetii is an obligate intracellular zoonotic bacterium widespread in nature that causes Q fever in animals and humans. The most common sources of human infection are domestic ruminants, but wildlife can also act as reservoir. Here, spleen samples from 652 wild ungulates and 218 wild birds collected in 2011-2019 in the Basque Country (northern Spain) were analysed by real-time PCR (IS1111 gene) and the results compared with data from a past study in 2001-2006. Among wild ungulates, C. burnetii DNA was detected in 7.0% (6/86) of roe deer (Capreolus capreolus), 1.9% (9/484) of wild boar (Sus scrofa) and 2.4% (2/82) of red deer (Cervus elaphus). The prevalence in roe deer was significantly higher compared to wild boar (p = 0.006). Among wild birds, only one white stork (Ciconia ciconia) tested positive. SNP-typing of C. burnetii-positive samples showed that wild ungulates shared SNP 2, SNP 6 and SNP 8 genotypes with domestic ruminants of the region. However, the white stork harboured a C. burnetii genotype (SNP 3) never identified in the studied area before. Comparing these results with those obtained in the same area a decade before (2001-2006), no significant differences were observed in the prevalence of C. burnetii in any of the wildlife species, indicating stability in C. burnetii prevalence. Nevertheless, continuous surveillance is needed to monitor any future changes in the reservoir role of roe deer and wild boar considering the increase in density of both species observed in Europe in the last decades.


Assuntos
Coxiella burnetii , Cervos , Febre Q , Animais , Animais Selvagens/microbiologia , Aves , Coxiella burnetii/genética , Cervos/microbiologia , Prevalência , Febre Q/epidemiologia , Febre Q/microbiologia , Febre Q/veterinária , Ruminantes , Espanha/epidemiologia
10.
Zoonoses Public Health ; 68(6): 666-676, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34240552

RESUMO

Real-time PCR analysis of environmental samples (dust and aerosols) is an easy tool to investigate the presence of Coxiella burnetii in the farm environment. The aim of this study was to assess the distribution of C. burnetii DNA in dust collected inside animal premises from 272 small ruminant farms in Bizkaia (northern Spain), a region with recent reports of human Q fever cases and outbreaks. Within each farm, 5 samples of dust were collected from difference surfaces, and data on animal census, management procedures, characteristics of the premises and geographic location were collected. Real-time PCR analysis of the dust samples detected presence of C. burnetii DNA in 98 farms (36.0%), flock-prevalence being higher in sheep (38.9%) or mixed ovine-caprine production systems (36.8%), compared to goats (25.0%). Larger bacterial burdens were observed in mixed farms, compared to sheep (p < .05). Single nucleotide polymorphism (SNP) analysis identified 5 different genotypes, with SNP8 being the predominant genotype (73%), followed by SNP6 (11%), SNP2 (9%), SNP4 (5%) and SNP1 (2%). Proportion of farms where C. burnetii DNA was detected differed among the different agricultural counties, and a higher proportion of C. burnetii DNA positive farms was associated with the occurrence of recent human Q fever outbreaks at several geographical locations. Dust sampling in domestic ruminant farms coupled with real-time PCR to screen for the presence of C. burnetii and estimate bacterial load can be a useful tool to identify herds and regions with high prevalence, define priority actions and monitor the effect of control measures. If combined with molecular genotyping and spatial distribution maps, it can help to identify farm contamination sources and trace the origin of human outbreaks.


Assuntos
Coxiella burnetii/isolamento & purificação , Poeira , Microbiologia Ambiental , Cabras/microbiologia , Febre Q/epidemiologia , Ovinos/microbiologia , Animais , Zoonoses Bacterianas/epidemiologia , Zoonoses Bacterianas/microbiologia , Coxiella burnetii/genética , Doenças Endêmicas , Genótipo , Abrigo para Animais , Humanos , Modelos Logísticos , Reação em Cadeia da Polimerase em Tempo Real , Espanha/epidemiologia
11.
Animals (Basel) ; 11(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068431

RESUMO

This study aimed to investigate the seroprevalence of C. burnetii in domestic ruminants, wild ungulates, as well as the current situation of Q fever in humans in a small region in northwestern Spain where a close contact at the wildlife-livestock-human interface exists, and information on C. burnetii infection is scarce. Seroprevalence of C. burnetii was 8.4% in sheep, 18.4% in cattle, and 24.4% in goats. Real-time PCR analysis of environmental samples collected in 25 livestock farms detected Coxiella DNA in dust and/or aerosols collected in 20 of them. Analysis of sera from 327 wild ungulates revealed lower seroprevalence than that found in domestic ruminants, with 8.4% of Iberian red deer, 7.3% chamois, 6.9% fallow deer, 5.5% European wild boar and 3.5% of roe deer harboring antibodies to C. burnetii. Exposure to the pathogen in humans was determined by IFAT analysis of 1312 blood samples collected from patients admitted at healthcare centers with Q fever compatible symptoms, such as fever and/or pneumonia. Results showed that 15.9% of the patients had IFAT titers ≥ 1/128 suggestive of probable acute infection. This study is an example of a One Health approach with medical and veterinary institutions involved in investigating zoonotic diseases.

12.
J Vector Ecol ; 46(2): 173-185, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35230022

RESUMO

Studies of the biodiversity of mosquito larval habitats are important for vector-borne disease control programs and help to improve vector distribution maps. This study was designed to investigate the geographical distribution of mosquito species and their larval habitats in urban, rural, and natural areas in northern Spain. Pre-imaginal stages were collected over two sampling periods (spring and summer) in 2019. In the laboratory, immature specimens were reared to the adult stage for species identification by morphological taxonomy and/or molecular methods. In total, 2,182 specimens belonging to 13 different native mosquito species of five genera were collected from 135 sampling points of which 59.2% harbored larvae. Culex pipiens s.l. was the most abundant species (45.1%), followed by Culex torrentium (12.3%), Anopheles maculipennis s.l. (10.2%), Culex hortensis (9.5%), and nine other species with lower frequencies that accounted for less than 25%. By molecular identification, An. maculipennis s.s. was identified as the only species within the An. maculipennis species complex and Cx. pipiens pipiens as the predominant subspecies of the Cx. pipiens species complex. Margins in large sunlit water bodies were the most suitable sites for An. maculipennis s.l., whereas Cx. pipiens s.l. was present in both natural and artificial habitats. The larval site index, species richness, and relative abundance of the mosquitoes were determined based on the characteristics of the sites where they were collected. The public health importance and ecology of some identified mosquitoes is also discussed.


Assuntos
Anopheles , Culex , Animais , Ecossistema , Larva , Mosquitos Vetores , Espanha
13.
Front Vet Sci ; 7: 352, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754620

RESUMO

Progression of Coxiella burnetii infection in four naturally infected sheep flocks, and in their farm environment, was monitored throughout four lambing seasons. Flocks with an active infection were selected based on the presence of C. burnetii DNA in bulk-tank milk (BTM) and a high seroprevalence in yearlings during the previous milking period (Spring 2015). During four consecutive lambing seasons (2015/16-2018/19), samples were collected within 1 week after each lambing period from animals (vaginal swabs, milk and feces from ewes, and yearlings) and the environment (dust indoor sheep premises). BTM samples and aerosols (outdoors and indoors) were monthly collected between lambing and the end of milking. Real-time PCR analyses showed different trends in C. burnetii shedding in the flocks, with a general progressive decrease in bacterial shedding throughout the years, interrupted in three flocks by peaks of reinfection associated with specific management practices. A significant relationship was found between C. burnetii fecal shedding and the bacterial burden detected in dust, whereas shedding by vaginal route affected the detection of C. burnetii in indoor aerosols. Three genotypes were identified: SNP8 (three flocks, 52.9% of the samples), SNP1 (two flocks, 44.8% samples), and SNP5 (one flock, two environmental samples). Coxiella burnetii viability in dust measured by culture in Vero cells was demonstrated in two of the flocks, even during the fourth lambing season. The results showed that infection can remain active for over 5 years if effective control and biosafety measures are not correctly implemented.

14.
Int J Food Microbiol ; 303: 42-45, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31132730

RESUMO

Q fever is a bacterial zoonosis caused by Coxiella burnetii whose main reservoir are small ruminants. Infected animals shed the bacteria into the environment through the products of abortion as well as through feces, urine, and milk. Susceptible people are mainly infected by the inhalation of contaminated aerosols, while food-borne infection is unclear. High prevalence of C. burnetii DNA in cheeses from cattle, sheep or goat has been reported, but studies on viability of C. burnetii in hard cheeses are scarce. In this study, 67 sheep handicraft hard cheeses of different geographic origins made with unpasteurized milk were analyzed for the presence of C. burnetii DNA. To investigate viability of C. burnetii in cheese, 5 cheeses were selected among the 20 that tested DNA positive. Presence of viable C. burnetii was demonstrated in one cheese by experimental inoculation in BALB/c mice and culture in Vero cells. To further investigate the effect of cheese ripening in C. burnetii viability, another 12 cheeses elaborated in the same farm and season, and ripened for between 2.0 and 10.1 months were investigated. Results showed presence of C. burnetii DNA in all of them and viable C. burnetii in 5, indicating that C. burnetii can remain viable after at least 8 months of ripening in hard cheeses made with unpasteurized milk under the acid pH (4.96-5.41) and low water activity (0.9065-0.9533) conditions observed.


Assuntos
Queijo/microbiologia , Coxiella burnetii/fisiologia , Microbiologia de Alimentos , Animais , Bovinos , Chlorocebus aethiops , Coxiella burnetii/genética , Feminino , Cabras/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Leite/microbiologia , Gravidez , Febre Q/microbiologia , Ovinos , Células Vero , Zoonoses/microbiologia
15.
Appl Environ Microbiol ; 84(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30076194

RESUMO

This study describes a Q fever outbreak in a herd of 77 Alpine goats which suffered a high rate of abortions (81% [58/72]) in January 2017 and presents the results of monitoring the contamination and viability of Coxiella burnetii in the farm environment several months after the outbreak. Over the course of 7 months, we studied bacterial shedding by 35 dams with abortions to monitor C. burnetii infection dynamics and the duration of excretion. The highest bacterial shedding load was observed in vaginal mucus, followed by in feces and in milk. Conversely, the duration of C. burnetii shedding was longer through feces (5 months after abortion) than milk (3 months). C. burnetii DNA was detected throughout the study in aerosol samples periodically collected indoors and outdoors from the animal premises. Mouse inoculation and culture in Vero cells demonstrated the presence of viable isolates in dust collected from different surfaces inside the animal facilities during the period of time with the highest number of abortions but not in dust collected 2, 3, and 4 months after the last parturition. Some workers and visitors were affected by Q fever, with attack rates of 78% (7/9) and 31% (4/13), respectively. Affected people mostly showed fever and seroconversion, along with myalgia and arthralgia in two patients and pneumonia in the index case. The genotype identified in animal and environmental samples (SNP1/MST13) turned out to be very aggressive in goats but caused only moderate symptoms in people. After the diagnosis of abortion by Q fever in goats, several control measures were implemented at the farm to prevent contamination inside and outside the animal facilities.IMPORTANCE This work describes a 7-month follow-up of the excretion by different routes of Coxiella burnetii genotype SNP1/MST13 in a herd of goats that suffered high rate of abortions (81%), generating high environmental contamination. Some of the workers and visitors who accessed the farm were infected, with fever as the main symptom but a low incidence of pneumonia. The detected strain (SNP1/MST13 genotype) turned out to be very aggressive in goats. The viability of C. burnetii was demonstrated in the environment of the farm at the time of abortions, but 2 months after the last parturition, no viable bacteria were detected. These results highlighted the importance of implementing good biosafety measures at farms and avoiding the entrance of visitors to farms several months after the end of the kidding period.


Assuntos
Aborto Animal/microbiologia , Derrame de Bactérias , Surtos de Doenças/veterinária , Doenças das Cabras/microbiologia , Viabilidade Microbiana , Febre Q/veterinária , Animais , Chlorocebus aethiops , Coxiella burnetii/genética , Coxiella burnetii/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Microbiologia Ambiental , Fazendeiros , Fazendas , Fezes/microbiologia , Feminino , Cabras , Humanos , Camundongos , Gravidez , Febre Q/complicações , Febre Q/epidemiologia , Células Vero
16.
PLoS One ; 10(9): e0138817, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26398249

RESUMO

An outbreak of Q fever occurred in February-April 2014 among workers at a waste-sorting plant in Bilbao (Spain). The outbreak affected 58.5% of investigated employees, 47.2% as confirmed cases (PCR and/or serology) and 11.3% as probable cases (symptoms without laboratory confirmation). Only employees who had no-access to the waste processing areas of the plant were not affected and incidence of infection was significantly higher among workers not using respiratory protection masks. Detection by qPCR of Coxiella burnetii in dust collected from surfaces of the plant facilities confirmed exposure of workers inside the plant. Animal remains sporadically detected among the residues received for waste-sorting were the most probable source of infection. After cleaning and disinfection, all environmental samples tested negative. Personal protection measures were reinforced and made compulsory for the staff and actions were taken to raise farmers' awareness of the biological risk of discharging animal carcasses as urban waste.


Assuntos
Surtos de Doenças , Exposição Ocupacional , Febre Q/epidemiologia , Adulto , Animais , Feminino , Resíduos Perigosos , Humanos , Masculino , Pessoa de Meia-Idade , Febre Q/transmissão , Eliminação de Resíduos , Instalações de Eliminação de Resíduos , Adulto Jovem
17.
Infect Genet Evol ; 31: 231-5, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25684412

RESUMO

The genetic diversity of Coxiella burnetii from 36 dairy cattle herds was determined by Multiple-Locus Variable number tandem repeats Analysis (MLVA), and genotypes from different sources (bulk-tank milk - BTM and surface dust) and sampling time (2009/10 and 2011/12) were compared. A total of 15 different genotypes were identified from 60 BTM and seven dust samples, including seven genotypes reported here for the first time (BN, BO, BP, BQ, BR, BS, BT). The two most prevalent genotypes (J and I), detected both in BTM and dust, accounted for 44.5% of the C. burnetii typed and have been reported infecting cattle worldwide. In 52% of herds more than one genotype was found, and mixed infection with two genotypes was observed in seven BTM samples. Comparison of C. burnetii genotypes at different samplings within each herd detected a change in genotype in 32% of herds, while a persistent genotype was identified in the remaining 68%. In addition, the genotype obtained from dust samples was always identical to that present in the BTM sample. Often persistent genotypes were among the most prevalent types. Clustering of the MLVA genotypes from this and other studies using the minimum spanning tree method separated our C. burnetii strains into two clusters, 10 genotypes clustered within genomic group (GG) III, and the remaining five types (AE, BQ, BR, BS and BT) grouped with GG II, which includes strains implicated in human outbreaks. Although presence in cattle of genotypes closely related to those identified in humans does not seem to be common event, it cannot be neglected and surveillance of genotype distribution is needed to fully understand the epidemiology of Q fever.


Assuntos
Agricultura , Coxiella burnetii/genética , Microbiologia Ambiental , Variação Genética , Genótipo , Animais , Bovinos , Frequência do Gene , Repetições Minissatélites , Tipagem de Sequências Multilocus
18.
Ticks Tick Borne Dis ; 6(1): 31-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25257849

RESUMO

This study was designed to investigate an outbreak of high mortality that occurred in naïve Assaf sheep introduced into a Latxa sheep flock in the Basque Country, a region where piroplasmosis is endemic. To identify the causes of this outbreak, a panel of different methods, including traditional pathological, biopathological and parasitological analyses combined with recently developed molecular methods, was used. These novel molecular methods included a multiplex real-time PCR assay to screen for the presence of the most important tick-borne pathogens (piroplasms and anaplasmas), followed by a second species-specific multiplex real-time PCR assay for the identification of Anaplasma-positive samples. The identification of piroplasm-positive samples was carried out by a multiplexed microsphere-based suspension array using a Luminex(®) xMAP technology-based procedure. Anaplasmas and/or piroplasms were detected in 7/10 lambs and 11/13 ewes, with Babesia ovis being detected in 12 of the 23 animals, Theileria ovis in 6 and Anaplasma ovis in 4, both as single and mixed infections. Most of the animals infected with B. ovis had a marked decrease in the values of the red blood cell parameters. Ticks collected from the animals were identified as Riphicephalus bursa, recognised vector of B. ovis. Other haemolytic pathologies (clostridial disease, copper poisoning and leptospirosis) were ruled out and, considering all clinical, laboratory and epidemiological data, babesiosis by B. ovis was diagnosed. A detailed description of the clinical outcome, with ca. 60% of mortality, laboratory results and epidemiological findings are provided. The implications of the introduction of naïve animals into a piroplasmosis endemic area are discussed.


Assuntos
Anaplasmose/epidemiologia , Babesiose/epidemiologia , Surtos de Doenças/veterinária , Doenças dos Ovinos/epidemiologia , Theileriose/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Carrapatos/parasitologia , Anaplasma/genética , Anaplasma/isolamento & purificação , Animais , Babesia/genética , Babesia/isolamento & purificação , Feminino , Masculino , Reação em Cadeia da Polimerase Multiplex/veterinária , Sensibilidade e Especificidade , Ovinos , Theileria/genética , Theileria/isolamento & purificação , Doenças Transmitidas por Carrapatos/epidemiologia , Carrapatos/microbiologia
19.
Acta Vet Scand ; 56: 47, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25053249

RESUMO

BACKGROUND: The high prevalence of Coxiella burnetii infection in dairy cattle herds recently reported and the long survival time of the bacterium in the environment pose a risk to human and animal health that calls for the implementation of control measures at herd level. This study presents the results of a 2-year vaccination program with an inactivated phase I vaccine in a Spanish dairy herd naturally infected with C. burnetii. Calves older than 3 months and non-pregnant heifers and cows were vaccinated in April 2011 and the farm was subsequently visited at a monthly basis for vaccination of recently calved cows and calves that reached the age of 3 months. Annual booster doses were given to previous vaccinated animals as well. The effectiveness of the vaccine was assessed in terms of level of C. burnetii shedding through milk and uterine fluids and environmental contamination as determined by polymerase chain reaction (PCR). RESULTS: The percentage of shedder animals through uterine fluids and milk progressively decreased, and C. burnetii DNA load in bulk-tank milk samples was low at the end of the study. The average seroconversion rate in not yet vaccinated animals, which acted as control group, was 8.6% during the first year and 0% in the second year. DNA of C. burnetii was found in aerosols and dust samples taken in the calving area only at the beginning of the study, whereas slurry samples remained C. burnetii PCR positive for at least 18 months. Multiple Locus Variable number tandem-repeat Analysis identified the same genotype in all C. burnetii DNA positive samples. CONCLUSIONS: In the absence of any changes in biosecurity, the overall reduction of C. burnetii infection in animals to 1.2% milk shedders and the reduced environment contamination found at the end of the study was ascribed to the effects of vaccination together with the culling of milk shedders. Vaccination has to be planned as a medium-long term strategy to suppress risks of re-infection.


Assuntos
Vacinas Bacterianas/farmacologia , Doenças dos Bovinos/prevenção & controle , Coxiella burnetii/imunologia , Febre Q/veterinária , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Coxiella burnetii/isolamento & purificação , Indústria de Laticínios , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Repetições Minissatélites , Febre Q/microbiologia , Febre Q/prevenção & controle , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Espanha , Fatores de Tempo , Vacinação/veterinária , Vacinas de Produtos Inativados/farmacologia
20.
Parasit Vectors ; 6(1): 277, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24499621

RESUMO

BACKGROUND: Piroplasms are tick-borne hemoprotozoans with a major impact on extensive management systems. Detection of sub-clinical low-level carriers, which can act as source of infection for vector ticks, is key to protect livestock trade and facilitate preventive control programs. The purpose of this study was to develop a method for the detection of ovine piroplasms and to use it in a field study aimed at investigating piroplasms infection in semi-extensive production systems in the Basque Country (northern Spain). METHODS: A DNA bead-based suspension array using the Luminex xMAP technology that included a generic Theileria-Babesia control probe, 6 species-specific probes, and an internal control probe was developed to detect and identify piroplasms that infect sheep. To monitor piroplasm infection in clinically healthy sheep from 4 flocks that share communal mountain pastures, blood samples were collected during 2 grazing seasons. RESULTS: Piroplasms were detected in 48% (214/446) of blood samples, nearly half of them (49.1%, 105/214) as mixed infections. Five different piroplasms were identified: Theileria sp. OT3 in 34.8% of the samples, Theileria ovis in 20.9%, and at lower prevalences Babesia motasi (12.3%), Theileria luwenshuni/OT1 (10.5%) and Babesia ovis (6.3%). Despite differences among flocks associated to differences in management, an increasing trend in the incidence of piroplasm infection with increasing age of animals after increased tick exposure was observed. This increment could be attributed to continued re-infection associated with re-exposure to ticks at grazing. Ticks were collected from animals (4 species) and vegetation (8 species), and associations between tick abundance seasonality and risk of infection with the different piroplasms were established. CONCLUSION: The multiplex Luminex xMAP procedure is a rapid and high throughput technique that provided highly specific and sensitive identification of single and mixed piroplasm infections in blood of sheep carriers. This study confirmed a situation of endemic stability for piroplasm infection in the region, where infection is present in the absence of clinical signs, and mountain grazing allows for sufficient inoculation rates to maintain such situation.


Assuntos
Babesia/isolamento & purificação , Babesiose/veterinária , Portador Sadio/veterinária , Técnicas de Diagnóstico Molecular/métodos , Parasitologia/métodos , Ovinos/parasitologia , Animais , Babesiose/parasitologia , Portador Sadio/parasitologia , Sensibilidade e Especificidade , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...