Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Vaccin Immunother ; 18(2): 1964317, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-34491878

RESUMO

Eliminating diarrheal diseases as a leading cause of childhood morbidity and mortality in low- and middle-income countries (LMICs) will require multiple intervention strategies. In this review, we spotlight a series of preclinical studies investigating the potential of orally administered monoclonal secretory IgA (SIgA) antibodies (MAbs) to reduce disease associated with three enteric bacterial pathogens: Campylobacter jejuni, enterotoxigenic Escherichia coli (ETEC), and invasive Salmonella enterica serovar Typhimurium. IgA MAbs targeting bacterial surface antigens (flagella, adhesins, and lipopolysaccharide) were generated from mice, humanized mice, and human tonsillar B cells. Recombinant SIgA1 and/or SIgA2 derivates of those MAbs were purified from supernatants following transient transfection of 293 cells with plasmids encoding antibody heavy and light chains, J-chain, and secretory component (SC). When administered to mice by gavage immediately prior to (or admixed with) the bacterial challenge, SIgA MAbs reduced infection C. jejuni, ETEC, and S. Typhimurium infections. Fv-matched IgG1 MAbs by comparison were largely ineffective against C. jejuni and S. Typhimurium under the same conditions, although they were partially effective against ETEC. While these findings highlight future applications of orally administered SIgA, the studies also underscored the fundamental challenges associated with using MAbs as prophylactic tools against enteric bacterial diseases.


Assuntos
Escherichia coli Enterotoxigênica , Animais , Anticorpos Antibacterianos , Anticorpos Monoclonais , Antígenos de Bactérias , Imunoglobulina A , Imunoglobulina A Secretora , Imunoglobulina G , Camundongos , Salmonella typhimurium
2.
ACS Infect Dis ; 7(5): 1221-1235, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33728898

RESUMO

As the predominant antibody type in mucosal secretions, human colostrum, and breast milk, secretory IgA (SIgA) plays a central role in safeguarding the intestinal epithelium of newborns from invasive enteric pathogens like the Gram-negative bacterium Salmonella enterica serovar Typhimurium (STm). SIgA is a complex molecule, consisting of an assemblage of two or more IgA monomers, joining (J)-chain, and secretory component (SC), whose exact functions in neutralizing pathogens are only beginning to be elucidated. In this study, we produced and characterized a recombinant human SIgA variant of Sal4, a well-characterized monoclonal antibody (mAb) specific for the O5-antigen of STm lipopolysaccharide (LPS). We demonstrate by flow cytometry, light microscopy, and fluorescence microscopy that Sal4 SIgA promotes the formation of large, densely packed bacterial aggregates in vitro. In a mouse model, passive oral administration of Sal4 SIgA was sufficient to entrap STm within the intestinal lumen and reduce bacterial invasion into gut-associated lymphoid tissues by several orders of magnitude. Bacterial aggregates induced by Sal4 SIgA treatment in the intestinal lumen were recalcitrant to immunohistochemical staining, suggesting the bacteria were encased in a protective capsule. Indeed, a crystal violet staining assay demonstrated that STm secretes an extracellular matrix enriched in cellulose following even short exposures to Sal4 SIgA. Collectively, these results demonstrate that recombinant human SIgA recapitulates key biological activities associated with mucosal immunity and raises the prospect of oral passive immunization to combat enteric diseases.


Assuntos
Imunoglobulina A Secretora , Salmonella typhimurium , Aglutinação , Humanos , Imunidade nas Mucosas , Imunoglobulina A , Recém-Nascido , Mucosa Intestinal , Tecido Linfoide
3.
Pathog Dis ; 78(4)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32589220

RESUMO

Following an episode of cholera, a rapidly dehydrating, watery diarrhea caused by the Gram-negative bacterium, Vibrio cholerae O1, humans mount a robust anti-lipopolysaccharide (LPS) antibody response that is associated with immunity to subsequent re-infection. In neonatal mouse and rabbit models of cholera, passively administered anti-LPS polyclonal and monoclonal (MAb) antibodies reduce V. cholerae colonization of the intestinal epithelia by inhibiting bacterial motility and promoting vibrio agglutination. Here we demonstrate that human anti-LPS IgG MAbs also arrest V. cholerae motility and induce bacterial paralysis. A subset of those MAbs also triggered V. cholerae to secrete an extracellular matrix (ECM). To identify changes in gene expression that accompany antibody exposure and that may account for motility arrest and ECM production, we subjected V. cholerae O1 El Tor to RNA-seq analysis after treatment with ZAC-3 IgG, a high affinity MAb directed against the core/lipid A region of LPS. We identified > 160 genes whose expression was altered following ZAC-3 IgG treatment, although canonical outer membrane stress regulons were not among them. ompS (VCA1028), a porin associated with virulence and indirectly regulated by ToxT, and norR (VCA0182), a σ54-dependent transcription factor involved in late stages of infection, were two upregulated genes worth noting.


Assuntos
Anticorpos Monoclonais/imunologia , Cólera/imunologia , Lipopolissacarídeos/imunologia , Vibrio cholerae O1/genética , Aglutinação , Animais , Anticorpos Antibacterianos/administração & dosagem , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Cólera/microbiologia , Toxina da Cólera/imunologia , Toxina da Cólera/metabolismo , Modelos Animais de Doenças , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Interações Hospedeiro-Patógeno , Humanos , Imunoglobulina G/imunologia , Lipídeo A/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo , Transcriptoma , Virulência
4.
Pathog Immun ; 5(1): 89-116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34136728

RESUMO

BACKGROUND: In cholera epidemics, the spread of disease can easily outpace vaccine control measures. The advent of technologies enabling the expression of recombinant proteins, including antibodies, in the milk of transgenic animals raises the prospect of developing a self-administered and cost-effective monoclonal antibody (MAb)-based prophylactic to reduce the incidence of Vibrio cholerae infection. METHODS: We generated a transgenic mouse line in which the heavy and light chain variable regions (Fv) specific for a conserved epitope in the core/lipid A of V. cholerae O1 lipopolysaccharide were expressed as a full-length human dimeric IgA1 (ZAC-3) and secreted into the milk of lactating dams. Milk containing ZAC-3 IgA1 was assessed for the ability to passively protect against experimental cholera infection in a newborn mouse model and to impact bacterial swimming behavior. RESULTS: Newborn mice that were passively administered ZAC-3 IgA1 containing milk, or that suckled on dams expressing ZAC-3 IgA1, were immune to experimental cholera infection, as measured by a reduction of V. cholerae O1 colony forming units recovered from intestinal lysates 12 hours after oral challenge. In vitro analysis revealed that ZAC-3 hIgA1-containing milk arrested V. cholerae motility in soft agar and liquid media and was effective at promoting bacterial agglutination, possibly accounting for the observed reduction in bacterial colonization in vivo. CONCLUSIONS: These results demonstrate that consumption of milk-derived antibodies may serve as a strategy to passively protect against cholera and possibly other enteric pathogens.

5.
PLoS One ; 13(1): e0190026, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29293563

RESUMO

Vibrio cholerae O1 is one of two serogroups responsible for epidemic cholera, a severe watery diarrhea that occurs after the bacterium colonizes the human small intestine and secretes a potent ADP-ribosylating toxin. Immunity to cholera is associated with intestinal anti-lipopolysaccharide (LPS) antibodies, which are known to inhibit V. cholerae motility and promote bacterial cell-cell crosslinking and aggregation. Here we report that V. cholerae O1 classical and El Tor biotypes produce an extracellular matrix (ECM) when forcibly immobilized and agglutinated by ZAC-3 IgG, an intestinally-derived monoclonal antibody (MAb) against the core/lipid A region of LPS. ECM secretion, as demonstrated by crystal violet staining and scanning electron microscopy, occurred within 30 minutes of antibody exposure and peaked by 3 hours. Non-motile mutants of V. cholerae did not secrete ECM following ZAC-3 IgG exposure, even though they were susceptible to agglutination. The ECM was enriched in O-specific polysaccharide (OSP) but not Vibrio polysaccharide (VPS). Finally, we demonstrate that ECM production by V. cholerae in response to ZAC-3 IgG was associated with bacterial resistant to a secondary complement-mediated attack. In summary, we propose that V. cholerae O1, upon encountering anti-LPS antibodies in the intestinal lumen, secretes an ECM (or O-antigen capsule) possibly as a strategy to shield itself from additional host immune factors and to exit an otherwise inhospitable host environment.


Assuntos
Matriz Extracelular , Vibrio cholerae O1/metabolismo , Testes de Aglutinação , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G/imunologia , Microscopia Eletrônica de Varredura , Antígenos O/imunologia , Vibrio cholerae O1/imunologia
6.
Vaccine ; 34(48): 5833-5836, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27773473

RESUMO

Vibrio cholerae is the causative agent of cholera, an acute diarrheal disease that remains endemic in many parts of the world. The mechanisms underlying immunity to cholera remain poorly defined, though it is increasingly clear that protection is associated with antibodies against lipopolysaccharide (LPS). Here we report that ZAC-3, a monoclonal antibody against the core/lipid A region of V. cholerae LPS is a potent inhibitor of V. cholerae flagellum-based motility in viscous and liquid environments. ZAC-3 arrested motility of the classical Ogawa strain O395, as well as the El Tor Inaba strain C6706. In addition, we demonstrate, in the neonatal mouse model, that ZAC-3 IgG and Fab fragments significantly reduced the ability of both V. cholerae strains O395 and C6706 to colonize the intestinal epithelium, revealing the potential of antibodies against the core/lipid A to contribute to immunity across biotypes, possibly through a mechanism involving motility arrest.


Assuntos
Anticorpos Monoclonais/imunologia , Cólera/microbiologia , Cólera/prevenção & controle , Lipídeo A/imunologia , Vibrio cholerae/imunologia , Animais , Animais Recém-Nascidos , Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/administração & dosagem , Antígenos de Bactérias/imunologia , Técnicas de Tipagem Bacteriana , Modelos Animais de Doenças , Flagelos/efeitos dos fármacos , Flagelos/fisiologia , Fragmentos Fab das Imunoglobulinas/administração & dosagem , Fragmentos Fab das Imunoglobulinas/imunologia , Imunoglobulina G/administração & dosagem , Imunoglobulina G/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Lipídeo A/química , Camundongos , Movimento , Vibrio cholerae/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...