Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34502473

RESUMO

Bacteria are one of the significant causes of infection in the body after scaffold implantation. Effective use of nanotechnology to overcome this problem is an exciting and practical solution. Nanoparticles can cause bacterial degradation by the electrostatic interaction with receptors and cell walls. Simultaneously, the incorporation of antibacterial materials such as zinc and graphene in nanoparticles can further enhance bacterial degradation. In the present study, zinc-doped hydroxyapatite/graphene was synthesized and characterized as a nanocomposite material possessing both antibacterial and bioactive properties for bone tissue engineering. After synthesizing the zinc-doped hydroxyapatite nanoparticles using a mechanochemical process, they were composited with reduced graphene oxide. The nanoparticles and nanocomposite samples were extensively investigated by transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. Their antibacterial behaviors against Escherichia coli and Staphylococcus aureus were studied. The antibacterial properties of hydroxyapatite nanoparticles were found to be improved more than 2.7 and 3.4 times after zinc doping and further compositing with graphene, respectively. In vitro cell assessment was investigated by a cell viability test and alkaline phosphatase activity using mesenchymal stem cells, and the results showed that hydroxyapatite nanoparticles in the culture medium, in addition to non-toxicity, led to enhanced proliferation of bone marrow stem cells. Furthermore, zinc doping in combination with graphene significantly increased alkaline phosphatase activity and proliferation of mesenchymal stem cells. The antibacterial activity along with cell biocompatibility/bioactivity of zinc-doped hydroxyapatite/graphene nanocomposite are the highly desirable and suitable biological properties for bone tissue engineering successfully achieved in this work.


Assuntos
Antibacterianos , Células da Medula Óssea/metabolismo , Osso e Ossos/metabolismo , Nanocompostos/química , Células-Tronco/metabolismo , Engenharia Tecidual , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Durapatita/química , Durapatita/farmacologia , Escherichia coli/crescimento & desenvolvimento , Grafite/química , Grafite/farmacologia , Camundongos , Staphylococcus aureus/crescimento & desenvolvimento , Zinco/química , Zinco/farmacologia
2.
Colloids Surf B Biointerfaces ; 159: 629-638, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28865359

RESUMO

Intranasal administration of pharmaceutical compounds is gaining considerable attention as an alternative route for localized/systemic drug delivery. However, insufficient therapeutic efficacy of drugs via this route seems to be a major challenge for development of de novo intranasal formulations. This shortcoming can be overcome by simultaneous utilization of a nanoparticulate delivery system with a polymeric gel network. Therefore, the main aim of the present study was to develop erodible in-situ gel forming systems of poloxamer 407® (P407) as a promising platform, capable of prolonging rivastigmine hydrogen tartrate (RHT) release from the embedded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). PLGA NPs containing RHT were formulated and characterized, then were embedded in P407 gel forming matrix and analyzed in terms of viscosity, stability, gelation temperature, loading efficiency and mucoahesive behavior. The cytotoxicity of NPs was evaluated on A549 cell line using MTT assay. Cellular uptake of the NPs was also measured by means of fluorescence microcopy and flow cytometry analyses. The formulations were finally evaluated for their permeability across sheep nasal mucosa. A linear dependence of sol-gel temperature (Tsol-gel) on the P407 concentration was observed, and a P407 content of 18% was selected. The loading efficiencies of formulations were found to be around 100.22-104.31%. The RHT-loaded NPs showed a suitable cytocompatibility on A549 cells with a time-dependent increase in cellular uptake. Besides, nanocomposites showed higher amounts of drug permeation through nasal sheep mucosa than plain drug gel. Taken all, it is concluded that the formulated nanocomposites may be considered as useful drug delivery systems for the nasal delivery of RHT with enhanced therapeutic efficacy.


Assuntos
Nanocompostos/química , Nanopartículas/química , Rivastigmina/química , Administração Intranasal , Linhagem Celular , Sistemas de Liberação de Medicamentos/métodos , Humanos , Ácido Láctico/química , Poloxâmero/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Temperatura
3.
Nanoscale ; 7(8): 3768-79, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25644549

RESUMO

Effective treatment of ovarian cancer depends upon the early detection of the malignancy. Here, we report on the development of a new nanostructured immunosensor for early detection of cancer antigen 125 (CA-125). A gold electrode was modified with mercaptopropionic acid (MPA), and then consecutively conjugated with silica coated gold nanoparticles (AuNP@SiO2), CdSe quantum dots (QDs) and anti-CA-125 monoclonal antibody (mAb). The engineered MPA|AuNP@SiO2|QD|mAb immunosensor was characterised using transmission electron microscopy (TEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Successive conjugation of AuNP@SiO2, CdSe QD and anti-CA-125 mAb onto the gold electrode resulted in sensitive detection of CA-125 with a limit of detection (LOD) of 0.0016 U mL(-1) and a linear detection range (LDR) of 0-0.1 U mL(-1). Based on the high sensitivity and specificity of the immunosensor, we propose this highly stable and reproducible biosensor for the early detection of CA-125.


Assuntos
Biomarcadores Tumorais/sangue , Técnicas Biossensoriais , Antígeno Ca-125/sangue , Proteínas de Membrana/sangue , Neoplasias Ovarianas/sangue , Aminas/química , Compostos de Cádmio , Espectroscopia Dielétrica , Feminino , Ouro/química , Humanos , Limite de Detecção , Nanopartículas Metálicas , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Nanotecnologia , Propionatos/química , Compostos de Selênio , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA