Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7938, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575779

RESUMO

Natural killer (NK) cells destroy tissue that have been opsonized with antibodies. Strategies to generate or identify cells with increased potency are expected to enhance NK cell-based immunotherapies. We previously generated NK cells with increased antibody-dependent cell mediated cytotoxicity (ADCC) following treatment with kifunensine, an inhibitor targeting mannosidases early in the N-glycan processing pathway. Kifunensine treatment also increased the antibody-binding affinity of Fc γ receptor IIIa/CD16a. Here we demonstrate that inhibiting NK cell N-glycan processing increased ADCC. We reduced N-glycan processing with the CRIPSR-CAS9 knockdown of MGAT1, another early-stage N-glycan processing enzyme, and showed that these cells likewise increased antibody binding affinity and ADCC. These experiments led to the observation that NK cells with diminished N-glycan processing capability also revealed a clear phenotype in flow cytometry experiments using the B73.1 and 3G8 antibodies binding two distinct CD16a epitopes. We evaluated this "affinity profiling" approach using primary NK cells and identified a distinct shift and differentiated populations by flow cytometry that correlated with increased ADCC.


Assuntos
Células Matadoras Naturais , Receptores de IgG , Humanos , Receptores de IgG/metabolismo , Citometria de Fluxo , Citotoxicidade Celular Dependente de Anticorpos , Polissacarídeos/metabolismo
2.
J Biomol NMR ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407675

RESUMO

A large proportion of human proteins contain post-translational modifications that cannot be synthesized by prokaryotes. Thus, mammalian expression systems are often employed to characterize structure/function relationships using NMR spectroscopy. Here we define the selective isotope labeling of secreted, post-translationally modified proteins using human embryonic kidney (HEK)293 cells. We determined that alpha-[15N]- atoms from 10 amino acids experience minimal metabolic scrambling (C, F, H, K, M, N, R, T, W, Y). Two more interconvert to each other (G, S). Six others experience significant scrambling (A, D, E, I, L, V). We also demonstrate that tuning culture conditions suppressed V and I scrambling. These results define expectations for 15N-labeling in HEK293 cells.

3.
J Biomol NMR ; 78(1): 9-18, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37989910

RESUMO

Despite the prevalence and importance of glycoproteins in human biology, methods for isotope labeling suffer significant limitations. Common prokaryotic platforms do not produce mammalian post-translation modifications that are essential to the function of many human glycoproteins, including immunoglobulin G1 (IgG1). Mammalian expression systems require complex media and thus introduce significant costs to achieve uniform labeling. Expression with Pichia is available, though expertise and equipment requirements surpass E. coli culture. We developed a system utilizing Saccharomyces cerevisiae, [13C]-glucose, and [15N]-ammonium chloride with complexity comparable to E. coli. Here we report two vectors for expressing the crystallizable fragment (Fc) of IgG1 for secretion into the culture medium, utilizing the ADH2 or DDI2 promoters. We also report a strategy to optimize the expression yield using orthogonal Taguchi arrays. Lastly, we developed two different media formulations, a standard medium which provides 86-92% 15N and 30% 13C incorporation into the polypeptide, or a rich medium which provides 98% 15N and 95% 13C incorporation as determined by mass spectrometry. This advance represents an expression and optimization strategy accessible to experimenters with the capability to grow and produce proteins for NMR-based experiments using E. coli.


Assuntos
Escherichia coli , Saccharomyces cerevisiae , Animais , Humanos , Ressonância Magnética Nuclear Biomolecular/métodos , Glicoproteínas/química , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Mamíferos
4.
Glycobiology ; 33(12): 1182-1192, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37792857

RESUMO

Factors regulating macrophage effector function represent potential targets to optimize the efficacy of antibody-mediated therapies. Macrophages are myeloid cells capable of engulfing and destroying diseased or damaged target cells. Antibodies binding to the target cell surface can engage macrophage Fc gamma receptors (FcγRs) to elicit antibody-dependent cellular phagocytosis (ADCP), a process that contributes to treatments mediated by anti-tumor antibodies. Conversely, macrophage ADCP of apoptotic T cells is also linked to tolerance in the tumor environment. Here we evaluated the role of asparagine(N)-linked glycans in the function of macrophages derived from primary human monocytes. Macrophages treated with kifunensine, an inhibitor of N-glycan processing, exhibited greater target binding and ADCP of antibody-coated target cells. Kifunensine treatment increased ADCP of both rituximab-coated Raji B cells and trastuzumab-coated SKBR3 cells. ADCP required FcγRs; inhibiting CD64 / FcγRI led to the greatest reduction, followed by CD32 / FcγRII and then CD16 / FcγRIII in most donors. Kifunensine treatment also increased the antibody-binding affinity of CD16. Differences in the abundance of phosphorylated immune receptors, including Siglec-9, CD32a, and LAIR-1 correlated with the increased ADCP. These results demonstrate that N-glycan processing regulates macrophage effector function.


Assuntos
Macrófagos , Neoplasias , Humanos , Macrófagos/metabolismo , Fagocitose , Monócitos/metabolismo , Polissacarídeos/metabolismo , Citotoxicidade Celular Dependente de Anticorpos
5.
Immunology ; 170(2): 202-213, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37218360

RESUMO

Novel approaches are required to improve the efficacy of immunotherapies and increase the proportion of patients who experience a benefit. Antibody-dependent cell-mediated cytotoxicity (ADCC) contributes to the efficacy of many monoclonal antibodies therapies. Natural killer (NK) cells mediate ADCC, though responses are highly variable and depend on prior treatment as well as other factors. Thus, strategies to increase NK cell activity are expected to improve multiple therapies. Both cytokine treatment and NK cell receptor engineering are being explored to increase ADCC. Post-translational modifications, including glycosylation, are widely recognized as mediators of cellular processes but minimally explored as an alternative strategy to increase ADCC. We evaluated the impact of treatment with kifunensine, an inhibitor of asparagine-linked (N-)glycan processing, on ADCC using primary and cultured human NK cells. We also probed affinity using binding assays and CD16a structure with nuclear magnetic resonance spectroscopy. Treating primary human NK cells and cultured YTS-CD16a cells with kifunensine doubled ADCC in a CD16a-dependent manner. Kifunensine treatment also increased the antibody-binding affinity of CD16a on the NK cell surface. Structural interrogation identified a single CD16a region, proximal to the N162 glycan and the antibody-binding interface, perturbed by the N-glycan composition. The observed increase in NK cell activity following kifunensine treatment synergized with afucosylated antibodies, further increasing ADCC by an additional 33%. These results demonstrate native N-glycan processing is an important factor that limits NK cell ADCC. Furthermore, optimal antibody and CD16a glycoforms are defined that provide the greatest ADCC activity.


Assuntos
Anticorpos Monoclonais , Receptores de IgG , Humanos , Receptores de IgG/metabolismo , Glicosilação , Anticorpos Monoclonais/metabolismo , Células Matadoras Naturais , Polissacarídeos/metabolismo , Citotoxicidade Celular Dependente de Anticorpos
6.
Front Immunol ; 13: 960411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36131913

RESUMO

Fc mediated effector functions of antibodies play important roles in immunotherapies and vaccine efficacy but assessing those functions in animal models can be challenging due to species differences. Rhesus macaques, Macaca mulatta (Mm) share approximately 93% sequence identity with humans but display important differences in their adaptive immune system that complicates their use in validating therapeutics and vaccines that rely on Fc effector functions. In contrast to humans, macaques only have one low affinity FcγRIII receptor, CD16, which shares a polymorphism at position 158 with human FcγRIIIa with Ile158 and Val158 variants. Here we describe structure-function relationships of the Ile/Val158 polymorphism in Mm FcγRIII. Our data indicate that the affinity of the allelic variants of Mm FcγRIII for the macaque IgG subclasses vary greatly with changes in glycan composition both on the Fc and the receptor. However, unlike the human Phe/Val158 polymorphism in FcγRIIIa, the higher affinity variant corresponds to the larger, more hydrophobic side chain, Ile, even though it is not directly involved in the binding interface. Instead, this side chain appears to modulate glycan-glycan interactions at the Fc/FcγRIII interface. Furthermore, changes in glycan composition on the receptor have a greater effect for the Val158 variant such that with oligomannose type glycans and with glycans only on Asn45 and Asn162, Val158 becomes the variant with higher affinity to Fc. These results have implications not only for the better interpretation of nonhuman primate studies but also for studies performed with human effector cells carrying different FcγRIIIa alleles.


Assuntos
Imunoglobulina G , Polissacarídeos , Animais , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Macaca mulatta , Polissacarídeos/metabolismo , Receptores de IgG/imunologia
7.
J Biol Chem ; 298(9): 102329, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921896

RESUMO

Antibodies engage Fc γ receptors (FcγRs) to elicit healing cellular immune responses following binding to a target antigen. Fc γ receptor IIIa/CD16a triggers natural killer cells to destroy target tissues with cytotoxic proteins and enhances phagocytosis mediated by macrophages. Multiple variables affect CD16a antibody-binding strength and the resulting immune response, including a genetic polymorphism. The predominant CD16a F158 allotype binds antibodies with less affinity than the less common V158 allotype. This polymorphism likewise affects cellular immune responses and clinical efficacy of antibodies relying on CD16a engagement, though it remains unclear how V/F158 affects CD16a structure. Another relevant variable shown to affect affinity is composition of the CD16a asparagine-linked (N)-glycans. It is currently not known how N-glycan composition affects CD16a F158 affinity. Here, we determined N-glycan composition affects the V158 and F158 allotypes similarly, and N-glycan composition does not explain differences in V158 and F158 binding affinity. Our analysis of binding kinetics indicated the N162 glycan slows the binding event, and shortening the N-glycans or removing the N162 glycan increased the speed of binding. F158 displayed a slower binding rate than V158. Surprisingly, we found N-glycan composition had a smaller effect on the dissociation rate. We also identified conformational heterogeneity of CD16a F158 backbone amide and N162 glycan resonances using NMR spectroscopy. Residues exhibiting chemical shift perturbations between V158 and F158 mapped to the antibody-binding interface. These data support a model for CD16a F158 with increased interface conformational heterogeneity, reducing the population of binding-competent forms available and decreasing affinity.


Assuntos
Afinidade de Anticorpos , Antígenos CD1 , Polissacarídeos , Receptores de IgG , Antígenos CD1/genética , Antígenos CD1/imunologia , Asparagina/genética , Humanos , Imunoglobulina G/química , Imunoglobulina G/imunologia , Polissacarídeos/imunologia , Receptores de IgG/química , Receptores de IgG/genética , Receptores de IgG/imunologia
8.
J Biomol NMR ; 76(4): 95-105, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35802275

RESUMO

The predominant protein expression host for NMR spectroscopy is Escherichia coli, however, it does not synthesize appropriate post-translation modifications required for mammalian protein function and is not ideal for expressing naturally secreted proteins that occupy an oxidative environment. Mammalian expression platforms can address these limitations; however, these are not amenable to cost-effective uniform 15 N labeling resulting from highly complex growth media requirements. Yeast expression platforms combine the simplicity of bacterial expression with the capabilities of mammalian platforms, however yeasts require optimization prior to isotope labeling. Yeast expression will benefit from methods to boost protein expression levels and developing labeling conditions to facilitate growth and high isotope incorporation within the target protein. In this work, we describe a novel platform based on the yeast Saccharomyces cerevisiae that simultaneously expresses the Kar2p chaperone and protein disulfide isomerase in the ER to facilitate the expression of secreted proteins. Furthermore, we developed a growth medium for uniform 15 N labeling. We recovered 2.2 mg/L of uniformly 15 N-labeled human immunoglobulin (Ig)G1 Fc domain with 90.6% 15 N labeling. NMR spectroscopy revealed a high degree of similarity between the yeast and mammalian-expressed IgG1 Fc domains. Furthermore, we were able to map the binding interaction between IgG1 Fc and the Z domain through chemical shift perturbations. This platform represents a novel cost-effective strategy for 15 N-labeled immunoglobulin fragments.


Assuntos
Fragmentos Fc das Imunoglobulinas , Saccharomyces cerevisiae , Animais , Escherichia coli/metabolismo , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Marcação por Isótopo/métodos , Mamíferos/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Saccharomyces cerevisiae/metabolismo
9.
Curr Res Immunol ; 3: 128-135, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712026

RESUMO

The antibody-binding Fc γ receptors (FcγRs) trigger life-saving immune responses and many therapeutic monoclonal antibodies require FcγR engagement for full effect. One proven strategy to improve the efficacy of antibody therapies is to increase receptor binding affinity, in particular binding to FcγRIIIa/CD16a. Currently, affinities are measured using recombinantly-expressed soluble extracellular FcγR domains and CD16a-mediated antibody-dependent immune responses are characterized using cultured cells. It is notable that CD16a is highly processed with multiple N-glycosylation sites, and preventing individual N-glycan modifications affects affinity. Furthermore, multiple groups have demonstrated that CD16a N-glycan composition is variable and composition impacts antibody binding affinity. The level of N-glycosylation at each site is not known though computational prediction indicates low to moderate potential at each site based on primary sequence (40-70%). Here we quantify occupancy of the extracellular domains using complementary mass spectrometry-based methods. All five sites of the tighter-binding CD16a V158 allotype showed 65-100% N-glycan occupancy in proteomics-based experiments. These observations were confirmed using intact protein mass spectrometry that demonstrated the predominant species corresponded to CD16a V158 with five N-glycans, with a smaller contribution from CD16a with four N-glycans. Occupancy was likewise high for the membrane-bound receptor at all detected N-glycosylation sites using CD16a purified from cultured human natural killer cells. Occupancy of the N162 site, critical for antibody binding, appeared independent of N169 occupancy based on analysis of the T171A mutant protein. The weaker-binding CD16a F158 allotype showed higher occupancy of >93% at each site.

10.
Methods Mol Biol ; 2442: 215-232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320529

RESUMO

Glycosylation is one of the most common protein posttranslational modifications. Most human lymphocyte membrane receptors are modified by diverse glycan structures, and functional studies have indicated that a family of glycan-binding proteins, galectins, can significantly modulate lymphocyte development and function by interacting with these glycans. Several galectins have a varying degree of affinity for the N-acetyllactosamine (LacNAc) disaccharide, and some critical lymphocyte receptors can be modified by glycan structures carrying this motif. However, the site-specific glycan composition on primary lymphocyte membrane receptors in healthy individuals is largely limited. The main reason for the limitation is low abundance of available material from a single donor and compositional heterogeneity in glycan structures that can potentially modify a protein. Donor-dependent variability in N-glycan structures on CD16a isolated from primary NK cells of healthy human donors was recently reported. NK cell CD16a is glycosylated at five N-glycosylation sites, and two of the five sites are modified, almost exclusively, by N-glycans with multiple LacNAc repeats which can serve as ligands for endogenous galectins. Thus, the protocol described in this section can be utilized to identify galectin ligands at specific glycosylation sites of endogenous membrane receptor from circulating primary human lymphocytes.


Assuntos
Galectinas , Glicoproteínas de Membrana , Galectinas/metabolismo , Glicosilação , Humanos , Células Matadoras Naturais/metabolismo , Ligantes , Glicoproteínas de Membrana/metabolismo
11.
Methods Mol Biol ; 2370: 185-205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34611870

RESUMO

Yeast are capable recombinant protein expression hosts that provide eukaryotic posttranslational modifications such as disulfide bond formation and N-glycosylation. This property has been used to create surface display libraries for protein engineering; however, yeast surface display (YSD) with common laboratory strains has limitations in terms of diversifying glycoproteins due to the incorporation of high levels of mannose residues which often obscure important epitopes and are immunogenic in humans. Developing new strains for efficient and appropriate display will require combining existing technologies to permit efficient glycoprotein engineering. Foundational efforts generating knockout strains lacking characteristic hypermannosylation reactions exhibited morphological defects and poor growth. Later strains with "humanized" N-glycosylation machinery surmounted these limitations by targeting a small suite of glycosylhydrolase and glycosyltransferase enzymes from other taxa to the endoplasmic reticulum and Golgi. Advanced yeast strains also provide key modifications at the glycan termini that are essential for the full function of many glycoproteins. Here we review progress toward glycoprotein engineering when glycosylation is required for full function using advanced yeast expression platforms and the suitability of each for YSD of glycoproteins.


Assuntos
Saccharomyces cerevisiae , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Humanos , Engenharia de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
12.
Antibodies (Basel) ; 10(4)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34698072

RESUMO

Interactions with cell surface receptors enhance the therapeutic properties of many important antibodies, including the low-affinity Fc γ Receptors (FcγRs). These interactions require proper processing of the immunoglobulin G Fc N-glycan, and eliminating the N-glycan abolishes binding, restricting antibody production to mammalian expression platforms. Yeasts, for example, generate extensively mannosylated N-glycans that are unsuitable for therapeutics. However, Fc with a specifically truncated N-glycan still engages receptors with considerable affinity. Here we describe the creation and applications of a novel Saccharomyces cerevisiae strain that specifically modifies the IgG1 Fc domain with an N-glycan consisting of a single N-acetylglucosamine residue. This strain displayed glycoengineered Fc on its surface for screening yeast surface display libraries and also served as an alternative platform to produce glycoengineered Rituximab. An IgG-specific endoglycosidase (EndoS2) truncates the IgG1 Fc N-glycan. EndoS2 was targeted to the yeast ER using the signal peptide from the yeast protein disulfide isomerase (PDI) and a yeast ER retention signal (HDEL). Furthermore, >99% of the yeast expressed Rituximab displayed the truncated glycoform as determined by SDS-PAGE and ESI-MS analyses. Lastly, the yeast expressed Rituximab engaged the FcγRIIIa with the expected affinity (KD = 2.0 ± 0.5 µM) and bound CD20 on Raji B cells.

13.
J Biol Chem ; 296: 100183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33310702

RESUMO

Many therapeutic monoclonal antibodies require binding to Fc γ receptors (FcγRs) for full effect and increasing the binding affinity increases efficacy. Preeminent among the five activating human FcγRs is FcγRIIIa/CD16a expressed by natural killer (NK) cells. CD16a is heavily processed, and recent reports indicate that the composition of the five CD16a asparagine(N)-linked carbohydrates (glycans) impacts affinity. These observations indicate that specific manipulation of CD16a N-glycan composition in CD16a-expressing effector cells including NK cells may improve treatment efficacy. However, it is unclear if modifying the expression of select genes that encode processing enzymes in CD16a-expressing effector cells is sufficient to affect N-glycan composition. We identified substantial processing differences using a glycoproteomics approach by comparing CD16a isolated from two NK cell lines, NK92 and YTS, with CD16a expressed by HEK293F cells and previous reports of CD16a from primary NK cells. Gene expression profiling by RNA-Seq and qRT-PCR revealed expression levels for glycan-modifying genes that correlated with CD16a glycan composition. These results identified a high degree of variability between the processing of the same human protein by different human cell types. N-glycan processing correlated with the expression of glycan-modifying genes and thus explained the substantial differences in CD16a processing by NK cells of different origins.


Assuntos
Células Matadoras Naturais/metabolismo , Polissacarídeos/genética , Receptores de IgG/metabolismo , Transcriptoma , Linhagem Celular , Glicopeptídeos/análise , Glicopeptídeos/metabolismo , Células HEK293 , Humanos , Células Matadoras Naturais/química , Modelos Moleculares , Receptores de IgG/química
14.
J Biol Chem ; 296: 100057, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33172893

RESUMO

The antibody-binding crystallizable fragment (Fc) γ receptors (FcγRs) are expressed by leukocytes and activate or suppress a cellular response once engaged with an antibody-coated target. Therapeutic mAbs that require FcγR binding for therapeutic efficacy are now frontline treatments for multiple diseases. However, substantially fewer development efforts are focused on the FcγRs, despite accounting for half of the antibody-receptor complex. The recent success of engineered cell-based immunotherapies now provides a mechanism to introduce modified FcγRs into the clinic. FcγRs are highly heterogeneous because of multiple functionally distinct alleles for many genes, the presence of membrane-tethered and soluble forms, and a high degree of post-translational modification, notably asparagine-linked glycans. One significant factor limiting FcγR improvement is the fundamental lack of knowledge regarding endogenous receptor forms present in the human body. This review describes the composition of FcγRs isolated from primary human leukocytes, summarizes recent efforts to engineer FcγRs, and concludes with a description of potential FcγR features to enrich for enhanced function. Further understanding FcγR biology could accelerate the development of new clinical therapies targeting immune-related disease.


Assuntos
Fragmentos Fc das Imunoglobulinas/imunologia , Imunoterapia/métodos , Receptores de IgG/imunologia , Alelos , Animais , Anticorpos Monoclonais/imunologia , Antígenos CD/imunologia , Citotoxicidade Imunológica , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Células Matadoras Naturais/imunologia , Receptores de Antígenos Quiméricos/imunologia
15.
Glycobiology ; 30(7): 427-432, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-31967297

RESUMO

Fc γ receptor IIIa/CD16a is an activating cell surface receptor with a well-defined role in natural killer (NK) cell and monocyte effector function. The extracellular domain is decorated with five asparagine (N)-linked glycans; N-glycans at N162 and N45 directly contribute to high-affinity antibody binding and protein stability. N-glycan structures at N162 showed significant donor-dependent variation in a recent study of CD16a isolated from primary human NK cells, but structures at N45 were relatively homogeneous. In this study, we identified variations in N45 glycan structures associated with a polymorphism coding for histidine instead of leucine at position 48 of CD16a from two heterozygous donors. It is known that H48 homozygous individuals suffer from immunodeficiency and recurrent viral infections. A mass spectrometry analysis of protein isolated from the primary natural killer cells of individuals expressing both CD16a L48 and H48 variants demonstrated clear processing differences at N45. CD16a H48 displayed a greater proportion of complex-type N45 glycans compared to the more common L48 allotype with predominantly hybrid N45-glycoforms. Structures at the four other N-glycosylation sites showed minimal differences from data collected on donors expressing only the predominant L48 variant. CD16a H48 purified from a pool of monocytes similarly displayed increased processing at N45. Here, we provide evidence that CD16a processing is affected by the H48 residue in primary NK cells and monocytes from healthy human donors.


Assuntos
Células Matadoras Naturais/imunologia , Monócitos/imunologia , Polissacarídeos/imunologia , Receptores de IgG/imunologia , Afinidade de Anticorpos , Humanos , Receptores de IgG/análise
16.
Mol Cell Proteomics ; 19(2): 362-374, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31888963

RESUMO

FcγRIIIa (CD16a) and FcγRIIa (CD32a) on monocytes are essential for proper effector functions including antibody dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). Indeed, therapeutic monoclonal antibodies (mAbs) that bind FcγRs with greater affinity exhibit greater efficacy. Furthermore, post-translational modification impacts antibody binding affinity, most notably the composition of the asparagine(N)-linked glycan at N162 of CD16a. CD16a is widely recognized as the key receptor for the monocyte response, however the post-translational modifications of CD16a from endogenous monocytes are not described. Here we isolated monocytes from individual donors and characterized the composition of CD16a and CD32a N-glycans from all modified sites. The composition of CD16a N-glycans varied by glycosylation site and donor. CD16a displayed primarily complex-type biantennary N-glycans at N162, however some individuals expressed CD16a V158 with ∼20% hybrid and oligomannose types which increased affinity for IgG1 Fc according to surface plasmon resonance binding analyses. The CD16a N45-glycans contain markedly less processing than other sites with >75% hybrid and oligomannose forms. N38 and N74 of CD16a both contain highly processed complex-type N-glycans with N-acetyllactosamine repeats and complex-type biantennary N-glycans dominate at N169. The composition of CD16a N-glycans isolated from monocytes included a higher proportion of oligomannose-type N-glycans at N45 and less sialylation plus greater branch fucosylation than we observed in a recent analysis of NK cell CD16a. The additional analysis of CD32a from monocytes revealed different features than observed for CD16a including the presence of a predominantly biantennary complex-type N-glycans with two sialic acids at both sites (N64 and N145).


Assuntos
Imunoglobulina G/metabolismo , Monócitos/metabolismo , Polissacarídeos/metabolismo , Receptores de IgG/metabolismo , Glicosilação , Células HEK293 , Humanos
17.
Glycobiology ; 30(4): 214-225, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-31822882

RESUMO

Therapeutic monoclonal antibodies (mAbs) are the fastest growing group of drugs with 11 new antibodies or antibody-drug conjugates approved by the Food and Drug Administration in 2018. Many mAbs require effector function for efficacy, including antibody-dependent cell-mediated cytotoxicity triggered following contact of an immunoglobulin G (IgG)-coated particle with activating crystallizable fragment (Fc) γ receptors (FcγRs) expressed by leukocytes. Interactions between IgG1 and the FcγRs require post-translational modification of the Fc with an asparagine-linked carbohydrate (N-glycan). Though the structure of IgG1 Fc and the role of Fc N-glycan composition on disease were known for decades, the underlying mechanism of how the N-glycan affected FcγR binding was not defined until recently. This review will describe the current understanding of how N-glycosylation impacts the structure and function of the IgG1 Fc and describe new techniques that are poised to provide the next critical breakthroughs.


Assuntos
Imunoglobulina G , Polissacarídeos , Animais , Glicosilação , Humanos , Imunoglobulina G/química , Imunoglobulina G/imunologia , Polissacarídeos/química , Polissacarídeos/imunologia
18.
Mol Cell Proteomics ; 18(11): 2178-2190, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31467031

RESUMO

Post-translational modification confers diverse functional properties to immune system proteins. The composition of serum proteins such as immunoglobulin G (IgG) strongly associates with disease including forms lacking a fucose modification of the crystallizable fragment (Fc) asparagine(N)-linked glycan that show increased effector function, however, virtually nothing is known about the composition of cell surface receptors or their bound ligands in situ because of low abundance in the circulating blood. We isolated primary NK cells from apheresis filters following plasma or platelet donation to characterize the compositional variability of Fc γ receptor IIIa/CD16a and its bound ligand, IgG1. CD16a N162-glycans showed the largest differences between donors; one donor displayed only oligomannose-type N-glycans at N162 that correlate with high affinity IgG1 Fc binding whereas the other donors displayed a high degree of compositional variability at this site. Hybrid-type N-glycans with intermediate processing dominated at N45 and highly modified, complex-type N-glycans decorated N38 and N74 from all donors. Analysis of the IgG1 ligand bound to NK cell CD16a revealed a sharp decrease in antibody fucosylation (43.2 ± 11.0%) versus serum from the same donors (89.7 ± 3.9%). Thus, NK cells express CD16a with unique modification patterns and preferentially bind IgG1 without the Fc fucose modification at the cell surface.


Assuntos
Membrana Celular/metabolismo , Imunoglobulina G/metabolismo , Células Matadoras Naturais/metabolismo , Polissacarídeos/metabolismo , Receptores de IgG/metabolismo , Adulto , Afinidade de Anticorpos , Membrana Celular/imunologia , Feminino , Glicosilação , Humanos , Imunoglobulina G/imunologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Ligantes , Masculino , Pessoa de Meia-Idade , Polissacarídeos/imunologia , Isoformas de Proteínas , Processamento de Proteína Pós-Traducional , Receptores de IgG/imunologia , Adulto Jovem
19.
Front Immunol ; 10: 223, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837990

RESUMO

Fc γ receptors (FcγR) expressed on the surface of human leukocytes bind clusters of immunoglobulin G (IgG) to induce a variety of responses. Many therapeutic antibodies and vaccine-elicited antibodies prevent or treat infectious diseases, cancers and autoimmune disorders by binding FcγRs, thus there is a need to fully define the variables that impact antibody-induced mechanisms to properly evaluate candidate therapies and design new intervention strategies. A multitude of factors influence the IgG-FcγR interaction; one well-described factor is the differential affinity of the six distinct FcγRs for the four human IgG subclasses. However, there are several other recently described factors that may prove more relevant for disease treatment. This review covers recent reports of several aspects found at the leukocyte membrane or outside the cell that contribute to the cell-based response to antibody-coated targets. One major focus is recent reports covering post-translational modification of the FcγRs, including asparagine-linked glycosylation. This review also covers the organization of FcγRs at the cell surface, and properties of the immune complex. Recent technical advances provide high-resolution measurements of these often-overlooked variables in leukocyte function and immune system activation.


Assuntos
Complexo Antígeno-Anticorpo/metabolismo , Fragmentos Fc das Imunoglobulinas/metabolismo , Receptores de IgG/metabolismo , Animais , Glicosilação , Humanos , Imunidade Celular , Leucócitos/imunologia , Receptores de IgG/genética
20.
Methods Enzymol ; 614: 239-261, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30611426

RESUMO

The majority of proteins excreted by human cells and borne at the cell surface are modified with carbohydrates. Glycoproteins mediate a wide range of processes and adopt fundamental roles in many diseases. The carbohydrates covalently attached to proteins during maturation in the cell directly impact protein structure and function as integral and indispensable components. However, the ability to study the structure of glycoproteins to high resolution was historically limited by technical barriers including a limited availability of appropriate recombinant protein expression platforms, limited methods to generate compositional homogeneity, and difficulties analyzing glycoprotein composition. Furthermore, glycoproteins and in particular the glycan moieties themselves often exhibit a high degree of conformational heterogeneity. Solution NMR spectroscopy is a powerful tool to study biological macromolecules that is capable of characterizing mobile elements of molecules with atomic-level resolution. Methods to express glycoproteins, incorporate stable isotope labels, and analyze glycoproteins have recently opened new avenues to prepare and investigate glycoproteins. These methods are accessible to many laboratories with experience expressing and purifying proteins from prokaryotic expression hosts.


Assuntos
Glicoproteínas/química , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Marcação por Isótopo/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Sequência de Carboidratos , Linhagem Celular , Cromatografia de Afinidade , Expressão Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Serina/química , Serina/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Treonina/química , Treonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...