Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Phys Med ; 42: 339-344, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28412136

RESUMO

PURPOSE: To develop a new optimization algorithm to carry out true dose painting by numbers (DPBN) planning based on full Monte Carlo (MC) calculation. METHODS: Four configurations with different clustering of the voxel values from PET data were proposed. An optimization method at the voxel level under Lineal Programming (LP) formulation was used for an inverse planning and implemented in CARMEN, an in-house Monte Carlo treatment planning system. RESULTS: Beamlet solutions fulfilled the objectives and did not show significant differences between the different configurations. More differences were observed between the segment solutions. The plan for the dose prescription map without clustering was the better solution. CONCLUSIONS: LP optimization at voxel level without dose-volume restrictions can carry out true DPBN planning with the MC accuracy.


Assuntos
Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Fluordesoxiglucose F18 , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Fótons , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos
2.
Appl Radiat Isot ; 123: 32-35, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28214683

RESUMO

One of the major causes of secondary malignancies after radiotherapy treatments are peripheral doses, known to increase for some newer techniques (such as IMRT or VMAT). For accelerators operating above 10MV, neutrons can represent important contribution to peripheral doses. This neutron contamination can be measured using different passive or active techniques, available in the literature. As far as active (or direct-reading) procedures are concerned, a major issue is represented by their parasitic photon sensitivity, which can significantly affect the measurement when the point of test is located near to the field-edge. This work proposes a simple method to estimate the unwanted photon contribution to these neutrons. As a relevant case study, the use of a recently neutron sensor for "in-phantom" measurements in high-energy machines was considered. The method, called "Dual Energy Photon Subtraction" (DEPS), requires pairs of measurements performed for the same treatment, in low-energy (6MV) and high energy (e.g. 15MV) fields. It assumes that the peripheral photon dose (PPD) at a fixed point in a phantom, normalized to the unit photon dose at the isocenter, does not depend on the treatment energy. Measurements with ionization chamber and Monte Carlo simulations were used to evaluate the validity of this hypothesis. DEPS method was compared to already published correction methods, such as the use of neutron absorber materials. In addition to its simplicity, an advantage of DEPs procedure is that it can be applied to any radiotherapy machine.


Assuntos
Nêutrons Rápidos , Fótons , Radiometria/métodos , Dosagem Radioterapêutica , Simulação por Computador , Nêutrons Rápidos/efeitos adversos , Humanos , Método de Monte Carlo , Neoplasias Induzidas por Radiação/etiologia , Segunda Neoplasia Primária/etiologia , Imagens de Fantasmas , Fótons/efeitos adversos , Radiometria/instrumentação , Radiometria/estatística & dados numéricos , Radioterapia de Intensidade Modulada/efeitos adversos , Espalhamento de Radiação
3.
PLoS One ; 12(2): e0172378, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28192503

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0166767.].

4.
PLoS One ; 11(11): e0166767, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27870878

RESUMO

A model based on a specific phantom, called QuAArC, has been designed for the evaluation of planning and verification systems of complex radiotherapy treatments, such as volumetric modulated arc therapy (VMAT). This model uses the high accuracy provided by the Monte Carlo (MC) simulation of log files and allows the experimental feedback from the high spatial resolution of films hosted in QuAArC. This cylindrical phantom was specifically designed to host films rolled at different radial distances able to take into account the entrance fluence and the 3D dose distribution. Ionization chamber measurements are also included in the feedback process for absolute dose considerations. In this way, automated MC simulation of treatment log files is implemented to calculate the actual delivery geometries, while the monitor units are experimentally adjusted to reconstruct the dose-volume histogram (DVH) on the patient CT. Prostate and head and neck clinical cases, previously planned with Monaco and Pinnacle treatment planning systems and verified with two different commercial systems (Delta4 and COMPASS), were selected in order to test operational feasibility of the proposed model. The proper operation of the feedback procedure was proved through the achieved high agreement between reconstructed dose distributions and the film measurements (global gamma passing rates > 90% for the 2%/2 mm criteria). The necessary discretization level of the log file for dose calculation and the potential mismatching between calculated control points and detection grid in the verification process were discussed. Besides the effect of dose calculation accuracy of the analytic algorithm implemented in treatment planning systems for a dynamic technique, it was discussed the importance of the detection density level and its location in VMAT specific phantom to obtain a more reliable DVH in the patient CT. The proposed model also showed enough robustness and efficiency to be considered as a pre-treatment VMAT verification system.


Assuntos
Dosimetria Fotográfica/métodos , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias da Próstata/radioterapia , Radioterapia de Intensidade Modulada/instrumentação , Simulação por Computador , Retroalimentação , Humanos , Masculino , Modelos Teóricos , Método de Monte Carlo , Imagens de Fantasmas
5.
Med Phys ; 41(8): 081719, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25086529

RESUMO

PURPOSE: The authors present a hybrid direct multileaf collimator (MLC) aperture optimization model exclusively based on sequencing of patient imaging data to be implemented on a Monte Carlo treatment planning system (MC-TPS) to allow the explicit radiation transport simulation of advanced radiotherapy treatments with optimal results in efficient times for clinical practice. METHODS: The planning system (called CARMEN) is a full MC-TPS, controlled through aMATLAB interface, which is based on the sequencing of a novel map, called "biophysical" map, which is generated from enhanced image data of patients to achieve a set of segments actually deliverable. In order to reduce the required computation time, the conventional fluence map has been replaced by the biophysical map which is sequenced to provide direct apertures that will later be weighted by means of an optimization algorithm based on linear programming. A ray-casting algorithm throughout the patient CT assembles information about the found structures, the mass thickness crossed, as well as PET values. Data are recorded to generate a biophysical map for each gantry angle. These maps are the input files for a home-made sequencer developed to take into account the interactions of photons and electrons with the MLC. For each linac (Axesse of Elekta and Primus of Siemens) and energy beam studied (6, 9, 12, 15 MeV and 6 MV), phase space files were simulated with the EGSnrc/BEAMnrc code. The dose calculation in patient was carried out with the BEAMDOSE code. This code is a modified version of EGSnrc/DOSXYZnrc able to calculate the beamlet dose in order to combine them with different weights during the optimization process. RESULTS: Three complex radiotherapy treatments were selected to check the reliability of CARMEN in situations where the MC calculation can offer an added value: A head-and-neck case (Case I) with three targets delineated on PET/CT images and a demanding dose-escalation; a partial breast irradiation case (Case II) solved with photon and electron modulated beams (IMRT + MERT); and a prostatic bed case (Case III) with a pronounced concave-shaped PTV by using volumetric modulated arc therapy. In the three cases, the required target prescription doses and constraints on organs at risk were fulfilled in a short enough time to allow routine clinical implementation. The quality assurance protocol followed to check CARMEN system showed a high agreement with the experimental measurements. CONCLUSIONS: A Monte Carlo treatment planning model exclusively based on maps performed from patient imaging data has been presented. The sequencing of these maps allows obtaining deliverable apertures which are weighted for modulation under a linear programming formulation. The model is able to solve complex radiotherapy treatments with high accuracy in an efficient computation time.


Assuntos
Método de Monte Carlo , Tomografia por Emissão de Pósitrons/métodos , Programação Linear , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Neoplasias da Mama/radioterapia , Simulação por Computador , Elétrons/uso terapêutico , Estudos de Viabilidade , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Masculino , Modelos Biológicos , Imagens de Fantasmas , Fótons/uso terapêutico , Tomografia por Emissão de Pósitrons/instrumentação , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/métodos , Fatores de Tempo , Tomografia Computadorizada por Raios X/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...