Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Biomaterials ; 308: 122549, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38554643

RESUMO

The availability of human cell-based models capturing molecular processes of cartilage degeneration can facilitate development of disease-modifying therapies for osteoarthritis [1], a currently unmet clinical need. Here, by imposing specific inflammatory challenges upon mesenchymal stromal cells at a defined stage of chondrogenesis, we engineered a human organotypic model which recapitulates main OA pathological traits such as chondrocyte hypertrophy, cartilage matrix mineralization, enhanced catabolism and mechanical stiffening. To exemplify the utility of the model, we exposed the engineered OA cartilage organoids to factors known to attenuate pathological features, including IL-1Ra, and carried out mass spectrometry-based proteomics. We identified that IL-1Ra strongly reduced production of the transcription factor CCAAT/enhancer-binding protein beta [2] and demonstrated that inhibition of the C/EBPß-activating kinases could revert the degradative processes. Human OA cartilage organoids thus represent a relevant tool towards the discovery of new molecular drivers of cartilage degeneration and the assessment of therapeutics targeting associated pathways.


Assuntos
Organoides , Osteoartrite , Engenharia Tecidual , Humanos , Organoides/metabolismo , Organoides/patologia , Osteoartrite/patologia , Osteoartrite/metabolismo , Engenharia Tecidual/métodos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Condrogênese , Condrócitos/metabolismo , Condrócitos/patologia , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Cartilagem/patologia , Cartilagem/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteômica
2.
ACS Appl Mater Interfaces ; 16(8): 9925-9943, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38362893

RESUMO

Implantation of a phenotypically stable cartilage graft could represent a viable approach for repairing osteoarthritic (OA) cartilage lesions. In the present study, we investigated the effects of modulating the bone morphogenetic protein (BMP), transforming growth factor beta (TGFß), and interleukin-1 (IL-1) signaling cascades in human bone marrow stromal cell (hBMSC)-encapsulated silk fibroin gelatin (SF-G) bioink. The selected small molecules LDN193189, TGFß3, and IL1 receptor antagonist (IL1Ra) are covalently conjugated to SF-G biomaterial to ensure sustained release, increased bioavailability, and printability, confirmed by ATR-FTIR, release kinetics, and rheological analyses. The 3D bioprinted constructs with chondrogenically differentiated hBMSCs were incubated in an OA-inducing medium for 14 days and assessed through a detailed qPCR, immunofluorescence, and biochemical analyses. Despite substantial heterogeneity in the observations among the donors, the IL1Ra molecule illustrated the maximum efficiency in enhancing the expression of articular cartilage components, reducing the expression of hypertrophic markers (re-validated by the GeneMANIA tool), as well as reducing the production of inflammatory molecules by the hBMSCs. Therefore, this study demonstrated a novel strategy to develop a chemically decorated, printable and biomimetic SF-G bioink to produce hyaline cartilage grafts resistant to acquiring OA traits that can be used for the treatment of degenerated cartilage lesions.


Assuntos
Bioimpressão , Cartilagem Articular , Fibroínas , Humanos , Fibroínas/química , Cartilagem Articular/metabolismo , Materiais Biocompatíveis/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Diferenciação Celular , Gelatina/farmacologia , Gelatina/química , Alicerces Teciduais/química , Engenharia Tecidual , Impressão Tridimensional
4.
Front Bioeng Biotechnol ; 11: 1150522, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288358

RESUMO

Knee osteoarthritis (OA) is a degenerative joint disease of the knee that results from the progressive loss of articular cartilage. It is most common in the elderly and affects millions of people worldwide, leading to a continuous increase in the number of total knee replacement surgeries. These surgeries improve the patient's physical mobility, but can lead to late infection, loosening of the prosthesis, and persistent pain. We would like to investigate if cell-based therapies can avoid or delay such surgeries in patients with moderate OA by injecting expanded autologous peripheral blood derived CD34+ cells (ProtheraCytes®) into the articular joint. In this study we evaluated the survival of ProtheraCytes® when exposed to synovial fluid and their performance in vitro with a model consisting of their co-culture with human OA chondrocytes in separate layers of Transwells and in vivo with a murine model of OA. Here we show that ProtheraCytes® maintain high viability (>95%) when exposed for up to 96 hours to synovial fluid from OA patients. Additionally, when co-cultured with OA chondrocytes, ProtheraCytes® can modulate the expression of some chondrogenic (collagen II and Sox9) and inflammatory/degrading (IL1ß, TNF, and MMP-13) markers at gene or protein levels. Finally, ProtheraCytes® survive after injection into the knee of a collagenase-induced osteoarthritis mouse model, engrafting mainly in the synovial membrane, probably due to the fact that ProtheraCytes® express CD44, a receptor of hyaluronic acid, which is abundantly present in the synovial membrane. This report provides preliminary evidence of the therapeutic potential of CD34+ cells on OA chondrocytes in vitro and their survival after in vivo implantation in the knee of mice and merits further investigation in future preclinical studies in OA models.

5.
Front Bioeng Biotechnol ; 11: 1119009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865027

RESUMO

Introduction: An in vitro model that appropriately recapitulates the degenerative disc disease (DDD) microenvironment is needed to explore clinically relevant cell-based therapeutic strategies for early-stage degenerative disc disease. We developed an advanced 3D nucleus pulposus (NP) microtissues (µT) model generated with cells isolated from human degenerating NP tissue (Pfirrmann grade: 2-3), which were exposed to hypoxia, low glucose, acidity and low-grade inflammation. This model was then used to test the performance of nasal chondrocytes (NC) suspension or spheroids (NCS) after pre-conditioning with drugs known to exert anti-inflammatory or anabolic activities. Methods: NPµTs were formed by i) spheroids generated with NP cells (NPS) alone or in combination with ii) NCS or iii) NC suspension and cultured in healthy or degenerative disc disease condition. Anti-inflammatory and anabolic drugs (amiloride, celecoxib, metformin, IL-1Ra, GDF-5) were used for pre-conditioning of NC/NCS. The effects of pre-conditioning were tested in 2D, 3D, and degenerative NPµT model. Histological, biochemical, and gene expression analysis were performed to assess matrix content (glycosaminoglycans, type I and II collagen), production and release of inflammatory/catabolic factors (IL-6, IL-8, MMP-3, MMP-13) and cell viability (cleaved caspase 3). Results: The degenerative NPµT contained less glycosaminoglycans, collagens, and released higher levels of IL-8 compared to the healthy NPµT. In the degenerative NPµT, NCS performed superior compared to NC cell suspension but still showed lower viability. Among the different compounds tested, only IL-1Ra pre-conditioning inhibited the expression of inflammatory/catabolic mediators and promoted glycosaminoglycan accumulation in NC/NCS in DDD microenvironment. In degenerative NPµT model, preconditioning of NCS with IL-1Ra also provided superior anti-inflammatory/catabolic activity compared to non-preconditioned NCS. Conclusion: The degenerative NPµT model is suitable to study the responses of therapeutic cells to microenvironment mimicking early-stage degenerative disc disease. In particular, we showed that NC in spheroidal organization as compared to NC cell suspension exhibited superior regenerative performance and that IL-1Ra pre-conditioning of NCS could further improve their ability to counteract inflammation/catabolism and support new matrix production within harsh degenerative disc disease microenvironment. Studies in an orthotopic in vivo model are necessary to assess the clinical relevance of our findings in the context of IVD repair.

6.
Cytotherapy ; 25(5): 548-558, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36894437

RESUMO

The development of medicinal products often continues throughout the different phases of a clinical study and may require challenging changes in raw and starting materials at later stages. Comparability between the product properties pre- and post-change thus needs to be ensured. Here, we describe and validate the regulatory compliant change of a raw material using the example of a nasal chondrocyte tissue-engineered cartilage (N-TEC) product, initially developed for treatment of confined knee cartilage lesions. Scaling up the size of N-TEC as required for the treatment of larger osteoarthritis defects required the substitution of autologous serum with a clinical-grade human platelet lysate (hPL) to achieve greater cell numbers necessary for the manufacturing of larger size grafts. A risk-based approach was performed to fulfill regulatory requirements and demonstrate comparability of the products manufactured with the standard process (autologous serum) already applied in clinical indications and the modified process (hPL). Critical attributes with regard to quality, purity, efficacy, safety and stability of the product as well as associated test methods and acceptance criteria were defined. Results showed that hPL added during the expansion phase of nasal chondrocytes enhances proliferation rate, population doublings and cell numbers at passage 2 without promoting the overgrowth of potentially contaminant perichondrial cells. N-TEC generated with the modified versus standard process contained similar content of DNA and cartilaginous matrix proteins with even greater expression levels of chondrogenic genes. The increased risk for tumorigenicity potentially associated with the use of hPL was assessed through karyotyping of chondrocytes at passage 4, revealing no chromosomal changes. Moreover, the shelf-life of N-TEC established for the standard process could be confirmed with the modified process. In conclusion, we demonstrated the introduction of hPL in the manufacturing process of a tissue engineered product, already used in a late-stage clinical trial. Based on this study, the national competent authorities in Switzerland and Germany accepted the modified process which is now applied for ongoing clinical tests of N-TEC. The described activities can thus be taken as a paradigm for successful and regulatory compliant demonstration of comparability in advanced therapy medicinal products manufacturing.


Assuntos
Condrócitos , Engenharia Tecidual , Humanos , Cariotipagem , Articulação do Joelho
7.
Faraday Discuss ; 242(0): 129-143, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36331026

RESUMO

The development of synthesis methods with enhanced control over the composition, size and atomic structure of High Entropy Nano-Alloys (HENA) could give rise to a new repertoire of nanomaterials with unprecedented functionalities, notably for mechanical, catalytic or hydrogen storage applications. Here, we have developed two original synthesis methods, one by a chemical route and the other by a physical one, to fabricate HENA with a size between 3 and 10 nm and a face centered cubic structure containing three (CoNiPt), four (CoNiPtCu and CoNiPtAu) or five (CoNiPtAuCu) metals close to the equiatomic composition. The key point in the proposed chemical synthesis method is to compensate the difference in reactivity of the different metal precursors by increasing the synthesis temperature using high boiling solvents. Physical syntheses were performed by pulsed laser ablation using a precise alternating deposition of the individual metals on a heated amorphous carbon substrate. Finally, we have exploited aberration-corrected transmission electron microscopy to explore the nanophase diagram of these nanostructures and reveal intrinsic thermodynamic properties of those complex nanosystems. In particular, we have shown (i) that the complete mixing of all elements can only occur close to the equiatomic composition and (ii) how the Ostwald ripening during HENA synthesis can induce size-dependent deviations from the equiatomic composition leading to the formation of large core-shell nanoparticles.

8.
Adv Healthc Mater ; 12(9): e2202550, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36527264

RESUMO

Engineering living bone tissue of defined shape on-demand has remained a challenge. 3D bioprinting (3DBP), a biofabrication process capable of yielding cell constructs of defined shape, when combined with developmental engineering can provide a possible path forward. Through the development of a bioink possessing appropriate rheological properties to carry a high cell load and concurrently yield physically stable structures, printing of stable, cell-laden, single-matrix constructs of anatomical shapes is realized without the need for fugitive or support phases. Using this bioink system, constructs of hypertrophic cartilage of predesigned geometry are engineered in vitro by printing human mesenchymal stromal cells at a high density to drive spontaneous condensation and implanted in nude mice to evoke endochondral ossification. The implanted constructs retain their prescribed shape over a 12-week period and undergo remodeling to yield ossicles of the designed shape with neovascularization. Microcomputed tomography, histological, and immunohistochemistry assessments confirm bone tissue characteristics and the presence of human cells. These results demonstrate the potential of 3DBP to fabricate complex bone tissue for clinical application.


Assuntos
Bioimpressão , Camundongos , Animais , Humanos , Bioimpressão/métodos , Camundongos Nus , Microtomografia por Raio-X , Engenharia Tecidual/métodos , Osso e Ossos , Alicerces Teciduais/química , Impressão Tridimensional
9.
Cells ; 11(24)2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36552796

RESUMO

Articular cartilage shows limited self-healing ability owing to its low cellularity and avascularity. Untreated cartilage defects display an increased propensity to degenerate, leading to osteoarthritis (OA). During OA progression, articular chondrocytes are subjected to significant alterations in gene expression and phenotype, including a shift towards a hypertrophic-like state (with the expression of collagen type X, matrix metalloproteinases-13, and alkaline phosphatase) analogous to what eventuates during endochondral ossification. Present OA management strategies focus, however, exclusively on cartilage inflammation and degradation. A better understanding of the hypertrophic chondrocyte phenotype in OA might give new insights into its pathogenesis, suggesting potential disease-modifying therapeutic approaches. Recent developments in the field of cellular/molecular biology and tissue engineering proceeded in the direction of contrasting the onset of this hypertrophic phenotype, but knowledge gaps in the cause-effect of these processes are still present. In this review we will highlight the possible advantages and drawbacks of using this approach as a therapeutic strategy while focusing on the experimental models necessary for a better understanding of the phenomenon. Specifically, we will discuss in brief the cellular signaling pathways associated with the onset of a hypertrophic phenotype in chondrocytes during the progression of OA and will analyze in depth the advantages and disadvantages of various models that have been used to mimic it. Afterwards, we will present the strategies developed and proposed to impede chondrocyte hypertrophy and cartilage matrix mineralization/calcification. Finally, we will examine the future perspectives of OA therapeutic strategies.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Condrócitos/metabolismo , Osteoartrite/metabolismo , Hipertrofia/metabolismo , Cartilagem Articular/metabolismo , Diferenciação Celular
10.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805907

RESUMO

Nasal chondrocytes (NCs) have a higher and more reproducible chondrogenic capacity than articular chondrocytes, and the engineered cartilage tissue they generate in vitro has been demonstrated to be safe in clinical applications. Here, we aimed at determining the feasibility for a single-stage application of NCs for cartilage regeneration under minimally invasive settings. In particular, we assessed whether NCs isolated using a short collagenase digestion protocol retain their potential to proliferate and chondro-differentiate within an injectable, swiftly cross-linked and matrix-metalloproteinase (MMP)-degradable polyethylene glycol (PEG) gel enriched with human platelet lysate (hPL). NC-hPL-PEG gels were additionally tested for their capacity to generate cartilage tissue in vivo and to integrate into cartilage/bone compartments of human osteochondral plugs upon ectopic subcutaneous implantation into nude mice. NCs isolated with a rapid protocol and embedded in PEG gels with hPL at low cell density were capable of efficiently proliferating and of generating tissue rich in glycosaminoglycans and collagen II. NC-hPL-PEG gels developed into hyaline-like cartilage tissues upon ectopic in vivo implantation and integrated with surrounding native cartilage and bone tissues. The delivery of NCs in PEG gels containing hPL is a feasible strategy for cartilage repair and now requires further validation in orthotopic in vivo models.


Assuntos
Cartilagem Articular , Condrócitos , Animais , Humanos , Cartilagem Hialina , Hidrogéis , Camundongos , Camundongos Nus , Polietilenoglicóis/farmacologia , Engenharia Tecidual/métodos
11.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269672

RESUMO

Degenerative disc disease, a painful pathology of the intervertebral disc (IVD), often causes disability and reduces quality of life. Although regenerative cell-based strategies have shown promise in clinical trials, none have been widely adopted clinically. Recent developments demonstrated that spheroid-based approaches might help overcome challenges associated with cell-based IVD therapies. Spheroids are three-dimensional multicellular aggregates with architecture that enables the cells to differentiate and synthesize endogenous ECM, promotes cell-ECM interactions, enhances adhesion, and protects cells from harsh conditions. Spheroids could be applied in the IVD both in scaffold-free and scaffold-based configurations, possibly providing advantages over cell suspensions. This review highlights areas of future research in spheroid-based regeneration of nucleus pulposus (NP) and annulus fibrosus (AF). We also discuss cell sources and methods for spheroid fabrication and characterization, mechanisms related to spheroid fusion, as well as enhancement of spheroid performance in the context of the IVD microenvironment.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/terapia , Qualidade de Vida , Engenharia Tecidual/métodos
12.
Cartilage ; 13(1): 19476035221075951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35189712

RESUMO

OBJECTIVE: Implantation of tissue-engineered tracheal grafts represents a visionary strategy for the reconstruction of tracheal wall defects after resections and may develop into a last chance for a number of patients with severe cicatricial stenosis. The use of a decellularized tracheal substrate would offer an ideally stiff graft, but the matrix density would challenge efficient remodeling into a living cartilage. In this study, we hypothesized that the pores of decellularized laser-perforated tracheal cartilage (LPTC) tissues can be colonized by adult nasal chondrocytes (NCs) to produce new cartilage tissue suitable for the repair of tracheal defects. DESIGN: Human, native tracheal specimens, isolated from cadaveric donors, were exposed to decellularized and laser engraving-controlled superficial perforation (300 µm depth). Human or rabbit NCs were cultured on the LPTCs for 1 week. The resulting revitalized tissues were implanted ectopically in nude mice or orthotopically in tracheal wall defects in rabbits. Tissues were assayed histologically and by microtomography analyses before and after implantation. RESULTS: NCs were able to efficiently colonize the pores of the LPTCs. The extent of colonization (i.e., percentage of viable cells spanning >300 µm of tissue depth), cell morphology, and cartilage matrix deposition improved once the revitalized constructs were implanted ectopically in nude mice. LPTCs could be successfully grafted onto the tracheal wall of rabbits without any evidence of dislocation or tracheal stenosis, 8 weeks after implantation. Rabbit NCs, within the LPTCs, actively produced new cartilage matrix. CONCLUSION: Implantation of NC-revitalized LPTCs represents a feasible strategy for the repair of tracheal wall defects.


Assuntos
Gravuras e Gravação , Engenharia Tecidual , Animais , Cartilagem/transplante , Humanos , Lasers , Camundongos , Camundongos Nus , Coelhos , Engenharia Tecidual/métodos , Alicerces Teciduais
13.
Int J Mol Sci ; 22(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34502489

RESUMO

The subchondral bone and its associated vasculature play an important role in the onset of osteoarthritis (OA). Integration of different aspects of the OA environment into multi-cellular and complex human, in vitro models is therefore needed to properly represent the pathology. In this study, we exploited a mesenchymal stromal cell line/endothelial cell co-culture to produce an in vitro human model of vascularized osteogenic tissue. A cocktail of inflammatory cytokines, or conditioned medium from mechanically-induced OA engineered microcartilage, was administered to this vascularized bone model to mimic the inflamed OA environment, hypothesizing that these treatments could induce the onset of specific pathological traits. Exposure to the inflammatory factors led to increased network formation by endothelial cells, reminiscent of the abnormal angiogenesis found in OA subchondral bone, demineralization of the constructs, and increased collagen production, signs of OA related bone sclerosis. Furthermore, inflammation led to augmented expression of osteogenic (alkaline phosphatase (ALP) and osteocalcin (OCN)) and angiogenic (vascular endothelial growth factor (VEGF)) genes. The treatment, with a conditioned medium from the mechanically-induced OA engineered microcartilage, also caused increased demineralization and expression of ALP, OCN, ADAMTS5, and VEGF; however, changes in network formation by endothelial cells were not observed in this second case, suggesting a possible different mechanism of action in inducing OA-like phenotypes. We propose that this vascularized bone model could represent a first step for the in vitro study of bone changes under OA mimicking conditions and possibly serve as a tool in testing anti-OA drugs.


Assuntos
Células da Medula Óssea/metabolismo , Células Endoteliais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Modelos Biológicos , Osteoartrite/metabolismo , Células da Medula Óssea/patologia , Linhagem Celular , Técnicas de Cocultura , Células Endoteliais/patologia , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Pessoa de Meia-Idade , Osteoartrite/patologia
14.
Sci Transl Med ; 13(609): eaaz4499, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34516821

RESUMO

Osteoarthritis (OA) is the most prevalent joint disorder, causing pain and disability predominantly in the aging population but also affecting young individuals. Current treatments are limited to use of anti-inflammatory drugs to alleviate symptoms or degenerated joint replacement by a prosthetic implant at the end stage of the disease. We hypothesized that degenerative cartilage defects can be treated using nasal chondrocyte­based tissue-engineered cartilage (N-TEC). We demonstrate that N-TEC maintained cartilaginous properties when exposed in vitro to inflammatory stimuli found in osteoarthritic joints and favorably altered the inflammatory profile of cells from osteoarthritic joints. These effects were at least partially mediated by down-regulation of the WNT (wingless/integrated) signaling pathway through sFRP1 (secreted frizzled-related protein-1). We further report that N-TEC survive and engraft in vivo in ectopic mouse models reproducing a human osteochondral OA tissue environment, as well as in sheep articular cartilage defects that mimic degenerative settings. Last, we tested the safety of autologous N-TEC for the treatment of osteoarthritic cartilage defects in the knees of two patients with advanced OA (Kellgren and Lawrence grades 3 and 4) who were otherwise considered for unicondylar knee arthroplasty. No adverse reactions were recorded, and patients reported reduced pain as well as improved joint function and life quality 14 months after surgery. Together, our findings indicate that N-TEC can directly contribute to cartilage repair in osteoarthritic joints. A suitably powered clinical trial is now required to assess its efficacy in the treatment of patients with OA.


Assuntos
Cartilagem Articular , Condrócitos , Articulação do Joelho , Cartilagens Nasais
15.
Acta Biomater ; 134: 240-251, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34339870

RESUMO

Cell-based strategies for nucleus pulposus (NP) regeneration that adequately support the engraftment and functionality of therapeutic cells are still lacking. This study explores a scaffold-free approach for NP repair, which is based on spheroids derived from human nasal chondrocytes (NC), a resilient cell type with robust cartilage-regenerative capacity. We generated NC spheroids (NCS) in two types of medium (growth or chondrogenic) and analyzed their applicability for NP repair with regard to injectability, biomechanical and biochemical attributes, and integration potential in conditions simulating degenerative disc disease (DDD). NCS engineered in both media were compatible with a typical spinal needle in terms of size (lower than 600µm), shape (roundness greater than 0.8), and injectability (no changes in morphology and catabolic gene expression after passing through the needle). While growth medium ensured stable elastic modulus (E) at 5 kPa, chondrogenic medium time-dependently increased E of NCS, in correlation with gene/protein expression of collagen. Notably, DDD-mimicking conditions did not impair NCS viability nor NCS fusion with NP spheroids simulating degenerated NP in vitro. To assess the feasibility of this approach, NCS were injected into an ex vivo-cultured bovine intervertebral disc (IVD) without damage using a spinal needle. In conclusion, our data indicated that NC cultured as spheroids can be compatible with strategies for minimally invasive NP repair in terms of injectability, tuneability, biomechanical features, and resilience. Future studies will address the capacity of NCS to integrate within degenerated NP under long-term loading conditions. STATEMENT OF SIGNIFICANCE: Current regenerative strategies still do not sufficiently support the engraftment of therapeutic cells in the nucleus pulposus (NP). We present an injectable approach based on spheroids derived from nasal chondrocytes (NC), a resilient cell type with robust cartilage-regenerative capacity. NC spheroids (NCS) generated with their own matrix and demonstrated injectability, tuneability of biomechanical/biochemical attributes, and integration potential in conditions simulating degenerative disc disease. To our knowledge, this is the first study that explored an injectable spheroid-based scaffold-free approach, which showed potential to support the adhesion and viability of therapeutic cells in degenerated NP. The provided information can be of substantial interest to a wide audience, including biomaterial scientists, biomedical engineers, biologists and medical researchers.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animais , Bovinos , Condrócitos , Condrogênese , Colágeno , Humanos , Degeneração do Disco Intervertebral/terapia
16.
Mater Sci Eng C Mater Biol Appl ; 120: 111701, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545860

RESUMO

Injury of articular cartilage leads to an imbalance in tissue homeostasis, and due to the poor self-healing capacity of cartilage the affected tissue often exhibits osteoarthritic changes. In recent years, injectable and highly tunable composite hydrogels for cartilage tissue engineering and drug delivery have been introduced as a desirable alternative to invasive treatments. In this study, we aimed to formulate injectable hydrogels for drug delivery and cartilage tissue engineering by combining different concentrations of hyaluronic acid-tyramine (HA-Tyr) with regenerated silk-fibroin (SF) solutions. Upon enzymatic crosslinking, the gelation and mechanical properties were characterized over time. To evaluate the effect of the hydrogel compositions and properties on extracellular matrix (ECM) deposition, bovine chondrocytes were embedded in enzymatically crosslinked HA-Tyr/SF composites (in further work abbreviated as HA/SF) or HA-Tyr hydrogels. We demonstrated that all hydrogel formulations were cytocompatible and could promote the expression of cartilage matrix proteins allowing chondrocytes to produce ECM, while the most prominent chondrogenic effects were observed in hydrogels with HA20/SF80 polymeric ratios. Unconfined mechanical testing showed that the compressive modulus for HA20/SF80 chondrocyte-laden constructs was increased almost 10-fold over 28 days of culture in chondrogenic medium which confirmed the superior production of ECM in this hydrogel compared to other hydrogels in this study. Furthermore, in hydrogels loaded with anabolic and anti-inflammatory drugs, HA20/SF80 hydrogel showed the longest and the most sustained release profile over time which is desirable for the long treatment duration typically necessary for osteoarthritic joints. In conclusion, HA20/SF80 hydrogel was successfully established as a suitable injectable biomaterial for cartilage tissue engineering and drug delivery applications.


Assuntos
Cartilagem Articular , Fibroínas , Animais , Anti-Inflamatórios , Bovinos , Condrócitos , Ácido Hialurônico , Hidrogéis/farmacologia , Engenharia Tecidual , Tiramina
17.
Cartilage ; 13(2_suppl): 68S-81S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32959685

RESUMO

OBJECTIVE: Cellular and molecular events occurring in cartilage regions close to injury are poorly investigated, but can possibly compromise the outcome of cell-based cartilage repair. In this study, key functional properties were assessed for cartilage biopsies collected from the central part of traumatic joint lesions (central) and from regions surrounding the defect (peripheral). These properties were then correlated with the quality of the initial cartilage biopsy and the inflammatory state of the joint. DESIGN: Cartilage samples were collected from knee joints of 42 patients with traumatic knee injuries and analyzed for cell phenotype (by reverse transcriptas-polymerase chain reaction), histological quality, cellularity, cell viability, proliferation capacity, and post-expansion chondrogenic capacity of chondrocytes (in pellet culture). Synovium was also harvested and analyzed for the expression of inflammatory cytokines. RESULTS: Cartilage quality and post-expansion chondrogenic capacity were higher in peripheral versus central samples. Differences between these 2 parameters were more pronounced in joints with high inflammatory features characterized by >100-fold difference in the mRNA levels of IL6 and IL8 in the corresponding synovium. Peripheral chondrocytes isolated from good- versus bad-quality biopsies expressed higher levels of collagen II/I and aggrecan/versican and lower levels of MMP13 and ADAMTS5. They also exhibited reduced proliferation and enhanced cartilage-forming capacity. CONCLUSIONS: Chondrocytes at the periphery of traumatic lesions better maintain properties of healthy cartilage compared to those isolated from the center, even when derived from bad-quality tissues harvested from highly inflamed joints. Future studies are necessary to investigate the change of functional properties of peripheral chondrocytes over time.


Assuntos
Cartilagem Articular , Condrócitos , Agrecanas/metabolismo , Diferenciação Celular/genética , Condrócitos/metabolismo , Condrogênese , Humanos
18.
Front Bioeng Biotechnol ; 9: 826867, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155416

RESUMO

Discogenic back pain is one of the most diffused musculoskeletal pathologies and a hurdle to a good quality of life for millions of people. Existing therapeutic options are exclusively directed at reducing symptoms, not at targeting the underlying, still poorly understood, degenerative processes. Common intervertebral disc (IVD) disease models still do not fully replicate the course of degenerative IVD disease. Advanced disease models that incorporate mechanical loading are needed to investigate pathological causes and processes, as well as to identify therapeutic targets. Organs-on-chip (OoC) are microfluidic-based devices that aim at recapitulating tissue functions in vitro by introducing key features of the tissue microenvironment (e.g., 3D architecture, soluble signals and mechanical conditioning). In this review we analyze and depict existing OoC platforms used to investigate pathological alterations of IVD cells/tissues and discuss their benefits and limitations. Starting from the consideration that mechanobiology plays a pivotal role in both IVD homeostasis and degeneration, we then focus on OoC settings enabling to recapitulate physiological or aberrant mechanical loading, in conjunction with other relevant features (such as inflammation). Finally, we propose our view on design criteria for IVD-on-a-chip systems, offering a future perspective to model IVD mechanobiology.

19.
J Cell Sci ; 133(23)2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33310869

RESUMO

Bone morphogenetic protein (BMP) signalling plays a significant role during embryonic cartilage development and has been associated with osteoarthritis (OA) pathogenesis, being in both cases involved in triggering hypertrophy. Inspired by recent findings that BMP inhibition counteracts hypertrophic differentiation of human mesenchymal progenitors, we hypothesized that selective inhibition of BMP signalling would mitigate hypertrophic features in OA cartilage. First, a 3D in vitro OA micro-cartilage model was established using minimally expanded OA chondrocytes that was reproducibly able to capture OA-like hypertrophic features. BMP signalling was then restricted by means of two BMP receptor type I inhibitors, resulting in reduction of OA hypertrophic traits while maintaining synthesis of cartilage extracellular matrix. Our findings open potential pharmacological strategies for counteracting cartilage hypertrophy in OA and support the broader perspective that key signalling pathways known from developmental processes can guide the understanding, and possibly the mitigation, of adult pathological features.


Assuntos
Cartilagem Articular , Osteoartrite , Adulto , Proteína Morfogenética Óssea 2 , Condrócitos , Humanos , Hipertrofia , Osteoartrite/tratamento farmacológico , Osteoartrite/genética
20.
Bioengineering (Basel) ; 7(4)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171883

RESUMO

One of the challenges in 3D-bioprinting is the realization of complex, volumetrically defined structures, that are also anatomically accurate and relevant. Towards this end, in this study we report the development and validation of a carboxylated agarose (CA)-based bioink that is amenable to 3D printing of free-standing structures with high stiffness at physiological temperature using microextrusion printing without the need for a fugitive phase or post-processing or support material (FRESH). By blending CA with negligible amounts of native agarose (NA) a bioink formulation (CANA) which is suitable for printing with nozzles of varying internal diameters under ideal pneumatic pressure was developed. The ability of the CANA ink to exhibit reproducible sol-gel transition at physiological temperature of 37 °C was established through rigorous characterization of the thermal behavior, and rheological properties. Using a customized bioprinter equipped with temperature-controlled nozzle and print bed, high-aspect ratio objects possessing anatomically-relevant curvature and architecture have been printed with high print reproducibility and dimension fidelity. Objects printed with CANA bioink were found to be structurally stable over a wide temperature range of 4 °C to 37 °C, and exhibited robust layer-to-layer bonding and integration, with evenly stratified structures, and a porous interior that is conducive to fluid transport. This exceptional layer-to-layer fusion (bonding) afforded by the CANA bioink during the print obviated the need for post-processing to stabilize printed structures. As a result, this novel CANA bioink is capable of yielding large (5-10 mm tall) free-standing objects ranging from simple tall cylinders, hemispheres, bifurcated 'Y'-shaped and 'S'-shaped hollow tubes, and cylinders with compartments without the need for support and/or a fugitive phase. Studies with human nasal chondrocytes showed that the CANA bioink is amenable to the incorporation of high density of cells (30 million/mL) without impact on printability. Furthermore, printed cells showed high viability and underwent mitosis which is necessary for promoting remodeling processes. The ability to print complex structures with high cell densities, combined with excellent cell and tissue biocompatibility of CA bodes well for the exploitation of CANA bioinks as a versatile 3D-bioprinting platform for the clinical translation of regenerative paradigms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...