Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 357: 120720, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38554451

RESUMO

Construction and demolition waste, along with discarded PET plastic bottles, have evolved into a widespread global resource. However, their current disposal in landfills poses a significant environmental pollution challenge. This research is centered on evaluating the performance of cement mortar composed by larger PET particles in conjunction with sand, construction and demolition waste, and lightweight expanded polystyrene aggregates. The primary objective of this study is to formulate a blend suitable for non-structural elements that can be easily manufactured for social housing construction. This modified blend extends upon the original certified mixture employed at CEVE for brick production, which encompasses cement and 3 mm-long PET particles. The experimental analysis revealed that blend containing 8 mm-long PET particles, in combination with fine aggregates of construction and demolition waste, attained a required mechanical strength of 2 MPa, while preserving the bulk density and hydric properties of the initial PET bricks developed at CEVE in Argentina.


Assuntos
Materiais de Construção , Reciclagem , Resíduos Industriais , Instalações de Eliminação de Resíduos , Argentina
2.
Polymers (Basel) ; 13(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383807

RESUMO

Local production of construction materials is a valuable tool for improving the building sector sustainability. In this sense, the use of lignocellulosic fibers from local species becomes an interesting alternative to the development of such materials. As it is thought that the properties of fiber-based materials are dependent on the fibers properties, the knowledge of such properties is fundamental to promote materials development. This study compares the physical, morphological, acoustic, and mechanical characteristics of coir (Cocos nucifera) and fique (Furcraea Agavaceae) fibers and panels. The chemical composition appears to be associated with the general behavior of the fibers and panels, regarding higher tensile strength, thermal degradation behavior, and water absorption. In most tests, fique had the upper hand, showing superior performance; however, on thermal degradation and water absorption, both materials had similar behavior. The sound absorption measurement showed that the fiber diameter affects the sound absorption at high frequencies, where fique panels showed better performance than coir panels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA