Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 657: 124131, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38643811

RESUMO

Immunization is a straightforward concept but remains for some pathogens like HIV-1 a challenge. Thus, new approaches towards increasing the efficacy of vaccines are required to turn the tide. There is increasing evidence that antigen exposure over several days to weeks induces a much stronger and more sustained immune response compared to traditional bolus injection, which usually leads to antigen elimination from the body within a couple of days. Therefore, we developed a poly(ethylene) glycol (PEG) hydrogel platform to investigate the principal feasibility of a sustained release of antigens to mimic natural infection kinetics. Eight-and four-armed PEG macromonomers of different MWs (10, 20, and 40 kDa) were end-group functionalized to allow for hydrogel formation via covalent cross-linking. An HIV-1 envelope (Env) antigen in its trimeric (Envtri) or monomeric (Envmono) form was applied. The soluble Env antigen was compared to a formulation of Env attached to silica nanoparticles (Env-SiNPs). The latter are known to have a higher immunogenicity compared to their soluble counterparts. Hydrogels were tunable regarding the rheological behavior allowing for different degradation times and release timeframes of Env-SiNPs over two to up to 50 days. Affinity measurements of the VCR01 antibody which specifically recognizes the CD4 binding site of Env, revealed that neither the integrity nor the functionality of Envmono-SiNPs (Kd = 2.1 ± 0.9 nM) and Envtri-SiNPs (Kd = 1.5 ± 1.3 nM), respectively, were impaired after release from the hydrogel (Kd before release: 2.1 ± 0.1 and 7.8 ± 5.3 nM, respectively). Finally, soluble Env and Env-SiNPs which are two physico-chemically distinct compounds, were co-delivered and shown to be sequentially released from one hydrogel which could be beneficial in terms of heterologous immunization or single dose vaccination. In summary, this study presents a tunable, versatile applicable, and effective delivery platform that could improve vaccination effectiveness also for other infectious diseases than HIV-1.


Assuntos
Vacinas contra a AIDS , Preparações de Ação Retardada , HIV-1 , Hidrogéis , Nanopartículas , Polietilenoglicóis , Hidrogéis/química , Nanopartículas/química , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/química , Polietilenoglicóis/química , HIV-1/imunologia , Dióxido de Silício/química , Humanos , Liberação Controlada de Fármacos , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
2.
Eur J Pharm Biopharm ; 193: 119-128, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37838145

RESUMO

The complement system plays a central role in our innate immunity to fight pathogenic microorganisms, foreign and altered cells, or any modified molecule. Consequences of complement activation include cell lysis, release of histamines, and opsonization of foreign structures in preparation for phagocytosis. Because nanoparticles interact with the immune system in various ways and can massively activate the complement system due to their virus-mimetic size and foreign texture, detrimental side effects have been described after administration like pro-inflammatory responses, inflammation, mild to severe anaphylactic crisis and potentially complement activated-related pseudoallergy (CARPA). Therefore, application of nanotherapeutics has sometimes been observed with restraint, and avoiding or even suppressing complement activation has been of utmost priority. In contrast, in the field of vaccine development, particularly protein-based immunogens that are attached to the surface of nanoparticles, may profit from complement activation regarding breadth and potency of immune response. Improved transport to the regional lymph nodes, enhanced antigen uptake and presentation, as well as beneficial effects on immune cells like B-, T- and follicular dendritic cells may be exploited by strategic nanoparticle design aimed to activate the complement system. However, a shift of paradigm regarding complement activation by nanoparticular vaccines can only be achieved if these beneficial effects are accurately elicited and overshooting effects avoided.


Assuntos
Nanomedicina , Nanopartículas , Ativação do Complemento , Proteínas do Sistema Complemento , Antígenos , Desenvolvimento de Vacinas , Nanopartículas/química
3.
Eur J Pharm Biopharm ; 192: 41-55, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37774890

RESUMO

Safe and effective vaccines have been regarded early on as critical in combating the COVID-19 pandemic. Among the deployed vaccine platforms, subunit vaccines have a particularly good safety profile but may suffer from a lower immunogenicity compared to mRNA based or viral vector vaccines. In fact, this phenomenon has also been observed for SARS-CoV-2 subunit vaccines comprising the receptor-binding domain (RBD) of the spike (S) protein. Therefore, RBD-based vaccines have to rely on additional measures to enhance the immune response. It is well accepted that displaying antigens on nanoparticles can improve the quantity and quality of vaccine-mediated both humoral and cell-mediated immune responses. Based on this, we hypothesized that SARS-CoV-2 RBD as immunogen would benefit from being presented to the immune system via silica nanoparticles (SiNPs). Herein we describe the preparation, in vitro characterization, antigenicity and in vivo immunogenicity of SiNPs decorated with properly oriented RBD in mice. We found our RBD-SiNP conjugates show narrow, homogeneous particle distribution with optimal size of about 100 nm for efficient transport to and into the lymph node. The colloidal stability and binding of the antigen was stable for at least 4 months at storage- and in vivo-temperatures. The antigenicity of the RBD was maintained upon binding to the SiNP surface, and the receptor-binding motif was readily accessible due to the spatial orientation of the RBD. The particles were efficiently taken up in vitro by antigen-presenting cells. In a mouse immunization study using an mRNA vaccine and spike protein as benchmarks, we found that the SiNP formulation was able to elicit a stronger RBD-specific humoral response compared to the soluble protein. For the adjuvanted RBD-SiNP we found strong S-specific multifunctional CD4+ T cell responses, a balanced T helper response, improved auto- and heterologous virus neutralization capacity, and increased serum avidity, suggesting increased affinity maturation. In summary, our results provide further evidence for the possibility of optimizing the cellular and humoral immune response through antigen presentation on SiNP.


Assuntos
COVID-19 , Vacinas Virais , Animais , Humanos , Camundongos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Pandemias , SARS-CoV-2 , Vacinas de Subunidades Antigênicas , Anticorpos Antivirais , Anticorpos Neutralizantes
4.
Eur J Pharm Biopharm ; 181: 88-101, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272655

RESUMO

Selective targeting of germline B cells with specifically designed germline-targeting HIV-1 envelope immunogens (GT-Env) is considered a feasible vaccination strategy to elicit broadly neutralizing antibodies (bnAbs). BnAbs are extremely valuable because they neutralize genetically distant viral strains at the same time. To overcome its inherently low affinity to germline B cells, the aim of the study was to present GT-Env via different immobilization strategies densely arrayed on the surface of nanoparticles. We engineered a prefusion-stabilized GT-Env trimer with affinity to VRC01 germline B cells using a bioinformatics-supported design approach. Distinct glycan modifications and amino acid substitutions yielded a GT-Env trimer which bound to the receptor with a KD of 11.5 µM. Silica nanoparticles with 200 nm diameter (SiNPs) were used for the multivalent display of the novel GT-Env with a 15 nm mean centre-to-centre spacing either by site-specific, covalent conjugation or at random, non-specific adsorption. Oriented, covalent GT-Env conjugation revealed better binding of structure dependent bnAbs as compared to non-specifically adsorbed GT-Env. In addition, GT-Env covalently attached activated a B cell line expressing the germline VRC01 receptor at an EC50 value in the nanomolar range (4 nM), while soluble GT-Env required 1,000-fold higher concentrations to induce signalling. The significantly lower GT-Env concentration was likely required due to avidity effects, which were in the picomolar range. Thus, low affinity antigens may particularly benefit from a particulate and multivalent delivery. In future, SiNPs are ideal to be modified in a modular design with various GT-Env variants that target different stages of germline and bnAb precursor B cells.


Assuntos
HIV-1 , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...