Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acid Ther ; 34(3): 143-155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38648015

RESUMO

Single-stranded oligonucleotides (SSOs) are a rapidly expanding class of therapeutics that comprises antisense oligonucleotides, microRNAs, and aptamers, with ten clinically approved molecules. Chemical modifications such as the phosphorothioate backbone and the 2'-O-methyl ribose can improve the stability and pharmacokinetic properties of therapeutic SSOs, but they can also lead to toxicity in vitro and in vivo through nonspecific interactions with cellular proteins, gene expression changes, disturbed RNA processing, and changes in nuclear structures and protein distribution. In this study, we screened a mini library of 277 phosphorothioate and 2'-O-methyl-modified SSOs, with or without mRNA complementarity, for cytotoxic properties in two cancer cell lines. Using circular dichroism, nucleic magnetic resonance, and molecular dynamics simulations, we show that phosphorothioate- and 2'-O-methyl-modified SSOs that form stable hairpin structures through Watson-Crick base pairing are more likely to be cytotoxic than those that exist in an extended conformation. In addition, moderate and highly cytotoxic SSOs in our dataset have a higher mean purine composition than pyrimidine. Overall, our study demonstrates a structure-cytotoxicity relationship and indicates that the formation of stable hairpins should be a consideration when designing SSOs toward optimal therapeutic profiles.


Assuntos
Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Oligonucleotídeos Fosforotioatos , Humanos , Oligonucleotídeos Fosforotioatos/química , Oligonucleotídeos Fosforotioatos/farmacologia , Linhagem Celular Tumoral , Pareamento de Bases , Relação Estrutura-Atividade , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/genética , Dicroísmo Circular
2.
Methods Mol Biol ; 2754: 3-31, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512658

RESUMO

The microtubule-associated protein, Tau, is an intrinsically disordered protein that plays a crucial role in neurodegenerative diseases like Alzheimer's disease. The posttranslational modifications across the Tau protein domains are involved in regulating Tau protein's function and disease onset. Of the various posttranslational modifications at Ser, Thr, and Tyr sites, O-GlcNAcylation and phosphorylation are the most critical ones, playing a vital role in Tau aggregation and tauopathies. To understand the function, it is essential to characterize the structural changes associated with Tau modification. Previous experimental studies have focused on high-resolution nuclear magnetic resonance techniques to structurally characterize the effect of phosphorylation, O-GlcNAcylation, and combination of both PTMs on Tau conformation in small peptides centered on the PHF-1 epitope from amino acid 392 to 411. The structural characterization using atomistic molecular dynamics simulation of such disordered peptides requires long simulation time, proper sampling method, and utilization of appropriate force fields for accurate determination of conformational ensembles, resembling the experimental data. This chapter details the protocol for the structural characterization of modified Tau peptides using the CHARMM36m force field and enhanced sampling methods like Gaussian accelerated molecular dynamics (GaMD) simulation. We have focused on a detailed explanation of the GaMD method and analyses of molecular dynamics trajectories to explain the relationship between two modifications, phospho- and glyco-, at C-terminus of Tau protein and its stable conformation over the longer simulation timeframes. The analyses involve energetics reweighting, clustering of simulation trajectories, and characterization of secondary structure using circular dichroism data from the simulation. The reader can utilize this protocol to investigate the structures of complex proteins, especially the disordered ones.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Proteínas tau/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/química , Doença de Alzheimer/metabolismo , Fosforilação
3.
ACS Omega ; 9(7): 8362-8373, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405517

RESUMO

Human single-stranded DNA binding protein 1 (hSSB1) forms a heterotrimeric complex, known as a sensor of single-stranded DNA binding protein 1 (SOSS1), in conjunction with integrator complex subunit 3 (INTS3) and C9ORF80. This sensory protein plays an important role in homologous recombination repair of double-strand breaks in DNA to efficiently recruit other repair proteins at the damaged sites. Previous studies have identified elevated hSSB1-mediated DNA repair activities in various cancers, highlighting its potential as an anticancer target. While prior efforts have focused on inhibiting hSSB1 by targeting its DNA binding domain, this study seeks to explore the inhibition of the hSSB1 function by disrupting its interaction with the key partner protein INTS3 in the SOSS1 complex. The investigative strategy entails a molecular docking-based screening of a specific compound library against the three-dimensional structure of INTS3 at the hSSB1 binding interface. Subsequent assessments involve in vitro analyses of protein-protein interaction (PPI) disruption and cellular effects through co-immunoprecipitation and immunofluorescence assays, respectively. Moreover, the study includes an evaluation of the structural stability of ligands at the INTS3 hot-spot site using molecular dynamics simulations. The results indicate a potential in vitro disruption of the INTS3-hSSB1 interaction by three of the tested compounds obtained from the virtual screening with one impacting the recruitment of hSSB1 and INTS3 to chromatin following DNA damage. To our knowledge, our results identify the first set of drug-like compounds that functionally target INTS3-hSSB1 interaction, and this provides the basis for further biophysical investigations that should help to speed up PPI inhibitor discovery.

4.
Proteins ; 92(2): 282-301, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37861198

RESUMO

Iroquois Homeobox 4 (IRX4) belongs to a family of homeobox TFs having roles in embryogenesis, cell specification, and organ development. Recently, large scale genome-wide association studies and epigenetic studies have highlighted the role of IRX4 and its associated variants in prostate cancer. No studies have investigated and characterized the structural aspect of the IRX4 homeodomain and its potential to bind to DNA. The current study uses sequence analysis, homology modeling, and molecular dynamics simulations to explore IRX4 homeodomain-DNA recognition mechanisms and the role of somatic mutations affecting these interactions. Using publicly available databases, gene expression of IRX4 was found in different tissues, including prostate, heart, skin, vagina, and the protein expression was found in cancer cell lines (HCT166, HEK293), B cells, ascitic fluid, and brain. Sequence conservation of the homeodomain shed light on the importance of N- and C-terminal residues involved in DNA binding. The specificity of IRX4 homodimer bound to consensus human DNA sequence was confirmed by molecular dynamics simulations, representing the role of conserved amino acids including R145, A194, N195, S190, R198, and R199 in binding to DNA. Additional N-terminal residues like T144 and G143 were also found to have specific interactions highlighting the importance of N-terminus of the homeodomain in DNA recognition. Additionally, the effects of somatic mutations, including the conserved Arginine (R145, R198, and R199) residues on DNA binding elucidated the importance of these residues in stabilizing the protein-DNA complex. Secondary structure and hydrogen bonding analysis showed the roles of specific residues (R145, T191, A194, N195, R198, and R199) in maintaining the homogeneity of the structure and its interaction with DNA. The differences in relative binding free energies of all the mutants shed light on the structural modularity of this protein and the dynamics behind protein-DNA interaction. We also have predicted that the C-terminal sequence of the IRX4 homeodomain could act as a potential cell-penetrating peptide, emphasizing the role these small peptides could play in targeting homeobox TFs.


Assuntos
Proteínas de Homeodomínio , Fatores de Transcrição , Masculino , Humanos , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Estudo de Associação Genômica Ampla , Células HEK293
5.
Protein Sci ; 32(3): e4572, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36691744

RESUMO

The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase and its cofactor, Cdh1, regulate the expression of several cell-cycle proteins and their functions during mitosis. Levels of the protein cell division cycle-associated protein 3 (CDCA3), which is functionally required for mitotic entry, are regulated by APC/CCdh1 . CDCA3 is an intrinsically disordered protein and contains both C-terminal KEN box and D-box recognition motifs, enabling binding to Cdh1. Our previous findings demonstrate that CDCA3 has a phosphorylation-dependent non-canonical ABBA-like motif within the linker region bridging these two recognition motifs and is required for efficient binding to Cdh1. Here, we sought to identify and further characterize additional residues that participate within this ABBA-like motif using detailed in vitro experiments and in silico modeling studies. We identified the role of H-bonds, hydrophobic and ionic interactions across the CDCA3 ABBA-like motif in the linker region between KEN and D-box motifs. This linker region adopts a well-defined structure when bound to Cdh1 in the presence of phosphorylation. Upon alanine mutation, the structure of this region is lost, leading to higher flexibility, and alteration in affinities due to binding to alternate sites on Cdh1. Our findings identify roles for the anchoring residues in the non-canonical ABBA-like motif to promote binding to the APC/CCdh1 and regulation of CDCA3 protein levels.


Assuntos
Proteínas de Ciclo Celular , Simulação de Dinâmica Molecular , Proteínas Cdh1/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/química , Ciclo Celular
6.
Eur J Med Chem ; 163: 28-36, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30503941

RESUMO

Phytoestrogens are class of natural compounds that shares structural similarity with estrogen and has the capacity to alter the fertilization in mammals. Till early 1990s, the natural phytoestrogens as well as their synthetic analogues were explored for their fertility modulating activity. During late 1990s, two findings renewed the interest on phytoestrogens as means to control hormone induced cancer: (i) revelation of overexpression of CYP1B1 in breast & ovarian cancer and (ii) protection offered by alphanapthoflavone (ANF) against hormone induced cancer. The objective of the review is to summarize the CYP1B1 inhibitory activity of phytoestrogens and their synthetic analogues reported till date. This review is an attempt to classify phytoestrogens and their synthetic analogues on their chemical architecture rather than simply by their chemical class (flavones, stilbenes etc.). This provides a broader sense to cluster many chemical classes under a particular chemical architecture/framework. Accordingly, we divided the phytoestrogen into three different classes based on two aryl groups (Ar) separated by linker (X), which may be either cyclic (c) or linear (l). The number in subscript to X denotes number of atoms: (i) Ar-cX4-Ar, (ii) Ar-lX3-Ar and (iii) Ar-lX2-Ar. This provides an opportunity to cluster flavones, quinolines and quinazolinones under Ar-cX4-Ar class, while biphenyl ureas and chalcones under Ar-lX3-Ar class. We believe in coming years many chemical scaffolds may be clustered under this framework.


Assuntos
Antineoplásicos Fitogênicos/química , Citocromo P-450 CYP1B1/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Fitoestrógenos/química , Animais , Antineoplásicos Fitogênicos/classificação , Classificação , Análise por Conglomerados , Inibidores Enzimáticos/química , Inibidores Enzimáticos/classificação , Humanos , Mimetismo Molecular , Neoplasias/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...