Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 12(547)2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522805

RESUMO

Heterozygous mutations of the gene encoding the postsynaptic protein SHANK3 are associated with syndromic forms of autism spectrum disorders (ASDs). One of the earliest clinical symptoms in SHANK3-associated ASD is neonatal skeletal muscle hypotonia. This symptom can be critical for the early diagnosis of affected children; however, the mechanism mediating hypotonia in ASD is not completely understood. Here, we used a combination of patient-derived human induced pluripotent stem cells (hiPSCs), Shank3Δ11(-/-) mice, and Phelan-McDermid syndrome (PMDS) muscle biopsies from patients of different ages to analyze the role of SHANK3 on motor unit development. Our results suggest that the hypotonia in SHANK3 deficiency might be caused by dysfunctions in all elements of the voluntary motor system: motoneurons, neuromuscular junctions (NMJs), and striated muscles. We found that SHANK3 localizes in Z-discs in the skeletal muscle sarcomere and co-immunoprecipitates with α-ACTININ. SHANK3 deficiency lead to shortened Z-discs and severe impairment of acetylcholine receptor clustering in hiPSC-derived myotubes and in muscle from Shank3Δ11(-/-) mice and patients with PMDS, indicating a crucial role for SHANK3 in the maturation of NMJs and striated muscle. Functional motor defects in Shank3Δ11(-/-) mice could be rescued with the troponin activator Tirasemtiv that sensitizes muscle fibers to calcium. Our observations give insight into the function of SHANK3 besides the central nervous system and imply potential treatment strategies for SHANK3-associated ASD.


Assuntos
Transtorno Autístico , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Camundongos , Proteínas dos Microfilamentos , Músculo Esquelético , Mutação/genética , Proteínas do Tecido Nervoso/genética , Junção Neuromuscular
2.
Autophagy ; 15(10): 1719-1737, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30939964

RESUMO

Mutations in the TBK1 (TANK binding kinase 1) gene are causally linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TBK1 phosphorylates the cargo receptors OPTN and SQSTM1 regulating a critical step in macroautophagy/autophagy. Disruption of the autophagic flux leads to accumulation of cytosolic protein aggregates, which are a hallmark of ALS. hiPSC-derived TBK1-mutant motoneurons (MNs) showed reduced TBK1 levels and accumulation of cytosolic SQSTM1-positive aggresomes. By screening a library of nuclear-receptor-agonists for modifiers of the SQSTM1 aggregates, we identified 4-hydroxy(phenyl)retinamide (4HPR) as a potent modifier exerting detrimental effects on mutant-TBK1 motoneurons fitness exacerbating the autophagy overload. We have shown by TEM that TBK1-mutant motoneurons accumulate immature phagophores due a failure in the elongation phase, and 4HPR further worsens the burden of dysfunctional phagophores. 4HPR-increased toxicity was associated with the upregulation of SQSTM1 in a context of strongly reduced ATG10, while rescue of ATG10 levels abolished 4HPR toxicity. Finally, we showed that 4HPR leads to a downregulation of ATG10 and to an accumulation of SQSTM1+ aggresomes also in hiPSC-derived C9orf72-mutant motoneurons. Our data show that cultured human motoneurons harboring mutations in TBK1 gene display typical ALS features, like decreased viability and accumulation of cytosolic SQSTM1-positive aggresomes. The retinoid 4HPR appears a strong negative modifier of the fitness of TBK1 and C9orf72-mutant MNs, through a pathway converging on the mismatch of initiated autophagy and ATG10 levels. Thus, autophagy induction appears not to be a therapeutic strategy for ALS unless the specific underlying pathway alterations are properly addressed. Abbreviations: 4HPR: 4-hydroxy(phenyl)retinamide; AKT: AKT1 serine/threonine kinase 1; ALS: amyotrophic lateral sclerosis; ATG: autophagy related; AVs: autophagic vesicle; C9orf72: chromosome 9 open reading frame 72; CASP3: caspase 3; CHAT: choline O-acetyltransferase; CYCS: cytochrome c, somatic; DIV: day in vitro; FTD: frontotemporal dementia; FUS: FUS RNA binding protein; GFP: green fluorescent protein; hiPSCs: human induced pluripotent stem cells; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MNs: motoneurons; mRFP: monomeric red fluorescent protein; MTOR: mechanistic target of rapamycin kinase; NFE2L2/NRF2: nuclear factor, erythroid 2 like 2; RARA: retinoic acid receptor alpha; SLC18A3/VACHT: solute carrier family 18 (vesicular acetylcholine transporter), member 3; SQSTM1/p62: sequestosome 1; TBK1: TANK binding kinase 1; TEM: transmission electron microscopy.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Autofagia/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteína Sequestossoma-1/metabolismo , Tretinoína/farmacologia , Proteínas de Transporte Vesicular/genética , Animais , Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Neurônios Motores/metabolismo , Mutação , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas de Transporte Vesicular/metabolismo
3.
Stem Cell Res ; 30: 150-162, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29929116

RESUMO

Mutations in genes coding for proteins involved in DNA damage response (DDR) and repair, such as C9orf72 and FUS (Fused in Sarcoma), are associated with neurodegenerative diseases and lead to amyotrophic lateral sclerosis (ALS). Heterozygous loss-of-function mutations in NEK1 (NIMA-related kinase 1) have also been recently found to cause ALS. NEK1 codes for a multifunctional protein, crucially involved in mitotic checkpoint control and DDR. To resolve pathological alterations associated with NEK1 mutation, we compared hiPSC-derived motoneurons carrying a NEK1 mutation with mutant C9orf72 and wild type neurons at basal level and after DNA damage induction. Motoneurons carrying a C9orf72 mutation exhibited cell specific signs of increased DNA damage. This phenotype was even more severe in NEK1c.2434A>T neurons that showed significantly increased DNA damage at basal level and impaired DDR after induction of DNA damage in an maturation-dependent manner. Our results provide first mechanistic insight in pathophysiological alterations induced by NEK1 mutations and point to a converging pathomechanism of different gene mutations causative for ALS. Therefore, our study contributes to the development of novel therapeutic strategies to reduce DNA damage accumulation in neurodegenerative diseases and ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Dano ao DNA/genética , Neurônios Motores/metabolismo , Quinase 1 Relacionada a NIMA/genética , Esclerose Lateral Amiotrófica/patologia , Humanos , Mutação , Transfecção
4.
Clin Epigenetics ; 9: 111, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29046733

RESUMO

BACKGROUND: Uniparental disomy of certain chromosomes are associated with a group of well-known genetic syndromes referred to as imprinting disorders. However, the extreme form of uniparental disomy affecting the whole genome is usually not compatible with life, with the exception of very rare cases of patients with mosaic genome-wide uniparental disomy reported in the literature. RESULTS: We here report on a fetus with intrauterine growth retardation and malformations observed on prenatal ultrasound leading to invasive prenatal testing. By cytogenetic (conventional karyotyping), molecular cytogenetic (QF-PCR, FISH, array), and methylation (MS-MLPA) analyses of amniotic fluid, we detected mosaicism for one cell line with genome-wide maternal uniparental disomy and a second diploid cell line of biparental inheritance with trisomy X due to paternal isodisomy X. As expected for this constellation, we observed DNA methylation changes at all imprinted loci investigated. CONCLUSIONS: This report adds new information on phenotypic outcome of mosaic genome-wide maternal uniparental disomy leading to an extreme form of multilocus imprinting disturbance. Moreover, the findings highlight the technical challenges of detecting these rare chromosome disorders prenatally.


Assuntos
Impressão Genômica , Ultrassonografia Pré-Natal/métodos , Dissomia Uniparental/genética , Adulto , Metilação de DNA , Feminino , Estudo de Associação Genômica Ampla , Humanos , Mosaicismo , Gravidez
5.
Am J Med Genet A ; 170A(5): 1202-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26822876

RESUMO

The femoral facial syndrome (FFS) is a rare congenital anomaly syndrome characterized by bilateral femoral hypoplasia and facial dysmorphism. The etiology of FFS is currently unknown but maternal/gestational diabetes has been proposed as a strong risk factor for syndromic femoral hypoplasia. In affected children born to non-diabetic mothers, a genetic contribution to FFS is suspected; however, no chromosomal anomalies or gene mutations have been identified so far. Here, we report on a girl with FFS and a de novo complex chromosome rearrangement of terminal chromosome 2q37.2. Radiographs of the pelvis and lower limbs showed bilateral shortening and bowing of the femur and radiographs of hands and feet revealed a brachydactyly type E (BDE). Using high resolution array-CGH, qPCR, and FISH, we detected a ~1.9 Mb duplication in the chromosomal region 2q37.2 and a ~5.4 Mb deletion on chromosome 2q37.3 that were absent in the parents. The duplication contains six genes and the deletion encompasses 68 genes; the latter has previously been shown to cause BDE (through haploinsufficiency for HDAC4) but not femoral hypoplasia. Therefore, we propose that the duplication 2q37.2 could be causative for the femur phenotype. To the best of our knowledge, our report is the first to propose a genetic cause in a case of FFS.


Assuntos
Anormalidades Múltiplas/genética , Braquidactilia/genética , Cromossomos Humanos Par 2/genética , Fêmur/anormalidades , Síndrome de Pierre Robin/genética , Anormalidades Múltiplas/diagnóstico por imagem , Braquidactilia/diagnóstico por imagem , Braquidactilia/fisiopatologia , Braquidactilia/cirurgia , Criança , Deleção Cromossômica , Duplicação Cromossômica , Diabetes Gestacional/genética , Diabetes Gestacional/fisiopatologia , Feminino , Fêmur/diagnóstico por imagem , Fêmur/fisiopatologia , Fêmur/cirurgia , Histona Desacetilases/genética , Humanos , Síndrome de Pierre Robin/diagnóstico por imagem , Síndrome de Pierre Robin/fisiopatologia , Síndrome de Pierre Robin/cirurgia , Gravidez , Proteínas Repressoras/genética , Fatores de Risco
6.
Front Cell Neurosci ; 10: 290, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28082870

RESUMO

Mutations within the FUS gene (Fused in Sarcoma) are known to cause Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease affecting upper and lower motoneurons. The FUS gene codes for a multifunctional RNA/DNA-binding protein that is primarily localized in the nucleus and is involved in cellular processes such as splicing, translation, mRNA transport and DNA damage response. In this study, we analyzed pathophysiological alterations associated with ALS related FUS mutations (mFUS) in human induced pluripotent stem cells (hiPSCs) and hiPSC derived motoneurons. To that end, we compared cells carrying a mild or severe mFUS in physiological- and/or stress conditions as well as after induced DNA damage. Following hyperosmolar stress or irradiation, mFUS hiPS cells recruited significantly more cytoplasmatic FUS into stress granules accompanied by impaired DNA-damage repair. In motoneurons wild-type FUS was localized in the nucleus but also deposited as small punctae within neurites. In motoneurons expressing mFUS the protein was additionally detected in the cytoplasm and a significantly increased number of large, densely packed FUS positive stress granules were seen along neurites. The amount of FUS mislocalization correlated positively with both the onset of the human disease (the earlier the onset the higher the FUS mislocalization) and the maturation status of the motoneurons. Moreover, even in non-stressed post-mitotic mFUS motoneurons clear signs of DNA-damage could be detected. In summary, we found that the susceptibility to cell stress was higher in mFUS hiPSCs and hiPSC derived motoneurons than in controls and the degree of FUS mislocalization correlated well with the clinical severity of the underlying ALS related mFUS. The accumulation of DNA damage and the cellular response to DNA damage stressors was more pronounced in post-mitotic mFUS motoneurons than in dividing hiPSCs suggesting that mFUS motoneurons accumulate foci of DNA damage, which in turn might be directly linked to neurodegeneration.

7.
Sex Dev ; 9(3): 136-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26043854

RESUMO

Disorders of sex development (DSD) affect the development of chromosomal, gonadal and/or anatomical sex. We analyzed a patient with ambiguous genitalia aiming to correlate the genetic findings with the phenotype. Blood and tissue samples from a male patient with penoscrotal hypospadias were analyzed by immunohistochemistry, karyotyping and FISH. DNA was sequenced for the AR, SRY and DHH genes, and further 26 loci in different sex chromosomes were analyzed by MLPA. The gonosomal origin was evaluated by simple tandem repeat (STR) analysis and SNP array. Histopathology revealed a streak gonad, a fallopian tube and a rudimentary uterus, positive for placental alkaline phosphatase, cytokeratin-7 and c-kit, and negative for estrogen, androgen and progesterone receptors, alpha-inhibin, alpha-1-fetoprotein, ß-hCG, and oct-4. Karyotyping showed a 45,X/46,XY mosaicism, yet FISH showed both 46,XX/46,XY mosaicism (gonad and urethral plate), 46,XX (uterus and tube) and 46,XY karyotypes (rudimentary testicular tissue). DNA sequencing revealed intact sequences in SOX9, WNT4, NR0B1, NR5A1, CYP21A2, SRY, AR, and DHH. STR analysis showed only one maternal allele for all X chromosome markers (uniparental isodisomy, UPD), with a weaker SRY signal and a 4:1 ratio in the X:Y signal. Our findings suggest that the observed complex DSD phenotype is the result of somatic gonosomal mosaicism and UPD despite a normal blood karyotype. The presence of UPD warrants adequate genetic counseling for the family and frequent, lifelong, preventive follow-up controls in the patient.


Assuntos
Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Transtornos do Desenvolvimento Sexual/genética , Mosaicismo , Dissomia Uniparental/genética , Cistoscopia , Transtornos do Desenvolvimento Sexual/cirurgia , Humanos , Hibridização in Situ Fluorescente , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genética , Cuidados Pré-Operatórios
8.
Hum Genet ; 134(1): 45-51, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25218063

RESUMO

Holoprosencephaly is a clinically and genetically heterogeneous midline brain malformation associated with neurologic manifestations including developmental delay, intellectual disability and seizures. Although mutations in the sonic hedgehog gene SHH and more than 10 other genes are known to cause holoprosencephaly, many patients remain without a molecular diagnosis. Here we show that a homozygous truncating mutation of STIL not only causes severe autosomal recessive microcephaly, but also lobar holoprosencephaly in an extended consanguineous Pakistani family. STIL mutations have previously been linked to centrosomal defects in primary microcephaly at the MCPH7 locus. Our results thus expand the clinical phenotypes associated with biallellic STIL mutations to include holoprosencephaly.


Assuntos
Holoprosencefalia/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Microcefalia/genética , Mutação/genética , Adolescente , Adulto , Pré-Escolar , Consanguinidade , Feminino , Humanos , Lactente , Masculino , Paquistão , Adulto Jovem
9.
Nat Genet ; 46(11): 1239-44, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25261934

RESUMO

Age-related degenerative and malignant diseases represent major challenges for health care systems. Elucidation of the molecular mechanisms underlying carcinogenesis and age-associated pathologies is thus of growing biomedical relevance. We identified biallelic germline mutations in SPRTN (also called C1orf124 or DVC1) in three patients from two unrelated families. All three patients are affected by a new segmental progeroid syndrome characterized by genomic instability and susceptibility toward early onset hepatocellular carcinoma. SPRTN was recently proposed to have a function in translesional DNA synthesis and the prevention of mutagenesis. Our in vivo and in vitro characterization of identified mutations has uncovered an essential role for SPRTN in the prevention of DNA replication stress during general DNA replication and in replication-related G2/M-checkpoint regulation. In addition to demonstrating the pathogenicity of identified SPRTN mutations, our findings provide a molecular explanation of how SPRTN dysfunction causes accelerated aging and susceptibility toward carcinoma.


Assuntos
Carcinoma Hepatocelular/genética , Proteínas de Ligação a DNA/genética , Instabilidade Genômica/genética , Neoplasias Hepáticas/genética , Progéria/genética , Idade de Início , Animais , Sequência de Bases , Mapeamento Cromossômico , Clonagem Molecular , Primers do DNA/genética , Replicação do DNA/genética , Citometria de Fluxo , Imunofluorescência , Genes cdc/genética , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Peixe-Zebra/genética
10.
Stem Cells Dev ; 21(6): 965-76, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-21699413

RESUMO

Patient-specific human induced pluripotent stem (hiPS) cells not only provide a promising tool for cellular disease models in general, but also open up the opportunity to establish cell-type-specific systems for personalized medicine. One of the crucial prerequisites for these strategies, however, is a fast and efficient reprogramming strategy from easy accessible somatic cell populations. Keratinocytes from plucked human hair had been introduced as a superior cell source for reprogramming purposes compared with the widely used skin fibroblasts. The starting cell population is, however, limited and thereby further optimization in terms of time, efficiency, and quality is inevitable. Here we show that rat embryonic fibroblasts (REFs) should replace mouse embryonic fibroblasts as feeder cells in the reprogramming process. REFs enable a significantly more efficient reprogramming procedure as shown by colony number and total amount of SSEA4-positive cells. We successfully produced keratinocyte-derived hiPS (k-hiPS) cells from various donors. The arising k-hiPS cells display the hallmarks of pluripotency such as expression of stem cell markers and differentiation into all 3 germ layers. The increased reprogramming efficiency using REFs as a feeder layer occurred independent of the proliferation rate in the parental keratinocytes and acts, at least in part, in a non-cell autonomous way by secreting factors known to facilitate pluripotency such as Tgfb1, Inhba and Grem1. Hence, we provide an easy to use and highly efficient reprogramming system that could be very useful for a broad application to generate human iPS cells.


Assuntos
Reprogramação Celular , Células-Tronco Embrionárias/citologia , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Queratinócitos/citologia , Animais , Humanos , Métodos , Camundongos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA