Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0304071, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820279

RESUMO

The suitability of Fourier transform infrared spectroscopy as a metastasis prognostic tool has not been reported for some cancer types. Our main aim was to show spectroscopic differences between live un-preprocessed cancer cells of different metastatic levels. Spectra of four cancer cell pairs, including colon cancer (SW480, SW620); human melanoma (WM115, WM266.4); murine melanoma (B16F01, B16F10); and breast cancer (MCF7, MDA-MB-231); each pair having the same genetic background, but different metastatic level were analyzed in the regions 1400-1700 cm-1 and 3100-3500 cm-1 using Principal Component Analysis, curve fitting, multifractal dimension and receiver operating characteristic (ROC) curves. The results show spectral markers I1540/I1473, I1652/I1473, [Formula: see text], and multifractal dimension of the spectral images are significantly different for the cells based on their metastatic levels. ROC curve analysis showed good diagnostic performance of the spectral markers in separating cells based on metastatic degree, with areas under the ROC curves having 95% confidence interval lower limits greater than 0.5 for most instances. These spectral features can be important in predicting the probability of metastasis in primary tumors, providing useful guidance for treatment planning. Our markers are effective in differentiating metastatic levels without sample fixation or drying and therefore could be compactible for future use in in-vivo procedures involving spectroscopic cancer diagnosis.


Assuntos
Metástase Neoplásica , Curva ROC , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Análise de Componente Principal , Feminino , Melanoma/diagnóstico , Melanoma/patologia
2.
Biotechnol J ; 19(1): e2300277, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37753941

RESUMO

The rise of biological therapeutics in the global pharmaceuticals market has escalated the demand for quality monoclonal antibodies for healthcare and scientific applications. Reducing costs while enhancing production yields without compromising quality are the main challenges to the growth of this industry today. Over the last two decades non-ionizing radiation has been demonstrated to elicit targeted biological responses in a frequency and dose dependent manner. We hypothesize and design a millimeter wave radiation procedure to enhance the yields of antibody-producing hybridoma cell lines. We demonstrate this method enhances the production of IgA and IgG antibodies from MOPC315.BM and U13.6 cells by a factor of 24.05 ± 3.32 and 1.41 ± 0.03 respectively relative to untreated cells. No treatment associated cytotoxicity was observed in either cell line corroborating physiological viability of irradiated cells. Our results demonstrate proof-of-concept of a novel technique to significantly enhance antibody yields from hybridoma cells which could lead to a reduction in antibody production costs. Further studies will focus on scaling up of this technology and employment of non-contact, tuned electromagnetic stimulation of biological systems for targeted responses.


Assuntos
Anticorpos Monoclonais , Formação de Anticorpos , Hibridomas/metabolismo , Tecnologia , Fenômenos Eletromagnéticos
3.
Sci Rep ; 13(1): 18935, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919384

RESUMO

Cancer is a leading cause of mortality today. Sooner a cancer is detected, the more effective is the treatment. Histopathological diagnosis continues to be the gold standard worldwide for cancer diagnosis, but the methods used are invasive, time-consuming, insensitive, and still rely to some degree on the subjective judgment of pathologists. Recent research demonstrated that Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy can be used to determine the metastatic potential of cancer cells by evaluating their membrane hydration. In the current study, we demonstrate that the conversion of ATR-FTIR spectra using multifractal transformation generates a unique number for each cell line's metastatic potential. Applying this technique to murine and human cancer cells revealed a correlation between the metastatic capacity of cancer cells within the same lineage and higher multifractal value. The multifractal spectrum value was found to be independent of the cell concentration used in the assay and unique to the tested lineage. Healthy cells exhibited a smaller multifractal spectrum value than cancer cells. Further, the technique demonstrated the ability to detect cancer progression by being sensitive to the proportional change between healthy and cancerous cells in the sample. This enables precise determination of cancer metastasis and disease progression independent of cell concentration by comparing the measured spectroscopy derived multifractal spectrum value. This quick and simple technique devoid of observer bias can transform cancer diagnosis to a great extent improving public health prognosis worldwide.


Assuntos
Neoplasias , Humanos , Animais , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise de Fourier , Neoplasias/diagnóstico , Proteínas Mutadas de Ataxia Telangiectasia
4.
Polymers (Basel) ; 15(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37896298

RESUMO

A major goal of regenerative medicine of the central nervous system is to accelerate the regeneration of nerve tissue, where astrocytes, despite their positive and negative roles, play a critical role. Thus, scaffolds capable of producing astrocytes from neural precursor cells (NPCs) are most desirable. Our study shows that NPCs are converted into reactive astrocytes upon cultivation on coralline-derived calcium carbonate coated with poly-D-lysine (PDL-CS). As shown via nuclei staining, the adhesion of neurospheres containing hundreds of hippocampal neural cells to PDL-CS resulted in disaggregation of the cell cluster as well as the radial migration of dozens of cells away from the neurosphere core. Migrating cells per neurosphere averaged 100 on PDL-CS, significantly higher than on uncoated CS (28), PDL-coated glass (65), or uncoated glass (20). After 3 days of culture on PDL-CS, cell migration plateaued and remained stable for four more days. In addition, NPCs expressing nestin underwent continuous morphological changes from round to spiky, extending and elongating their processes, resembling activated astrocytes. The extension of the process increased continuously during the maturation of the culture and doubled after 7 days compared to day 1, whereas bifurcation increased by twofold during the first 3 days before plateauing. In addition, nestin positive cells' shape, measured through the opposite circularity level correlation, decreased approximately twofold after three days, indicating spiky transformation. Moreover, nestin-positive cells co-expressing GFAP increased by 2.2 from day 1 to 7, reaching 40% of the NPC population on day 7. In this way, PDL-CS promotes NPC differentiation into reactive astrocytes, which could accelerate the repair of neural tissue.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123195, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37523854

RESUMO

Photodynamic therapy can be significantly improved by techniques utilizing light windows of higher tissue penetration depths with optimally matched photoactive agents to provide deep interstitial treatment. Classical blue light photosensitizers were photodynamically activated using infrared light via coupled harmonic nanoparticles with optimized intermediary distances using spacers. Upon 800 nm pulsed laser irradiation perovskite nanoparticles with optimized coupling to either curcumin or protoporphyrin IX reduced the viability of MCF7 breast cancer cells by 73 percent and 64 percent, respectively, while exhibiting negligible dark toxicity. The findings pave the way for clinical adaptation of ease-of-synthesis photodynamically active preparations operable under deep tissue penetrating infrared lights using commonly available otherwise infrared inactive classical blue light photosensitizers.


Assuntos
Curcumina , Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Raios Infravermelhos
6.
PLoS One ; 17(9): e0274954, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36173987

RESUMO

Combination of photosensitizers (PS) with nanotechnology can improve the therapeutic efficiency of clinical Photodynamic Therapy (PDT) by converting visible light reactive PSs into Near-Infrared (NIR) light responsive molecules using Harmonic Nanoparticles (HNP). To test the PDT efficiency of HNP-PS conjugates, pathogenic S. aureus cell cultures were treated with perovskite (Barium Titanate) Second Harmonic Generation (SHG) nanoparticles conjugated to photosensitizers (PS) (we compared both FDA approved Protoporphyrin IX and Curcumin) and subjected to a femtosecond pulsed Near-Infrared (NIR) laser (800 nm, 232-228 mW, 12-15 fs pulse width at repetition rate of 76.9 MHz) for 10 minutes each. NIR PDT using Barium Titanate (BT) conjugated with Protoporphyrin IX as HNP-PS conjugate reduced the viability of S. aureus cells by 77.3 ± 9.7% while BT conjugated with Curcumin did not elicit any significant effect. Conventional PSs reactive only to visible spectrum light coupled with SHG nanoparticles enables the use of higher tissue penetrating NIR light to generate an efficient photodynamic effect, thereby overcoming low light penetration and tissue specificity of conventional visible light PDT treatments.


Assuntos
Curcumina , Nanopartículas , Fotoquimioterapia , Microscopia de Geração do Segundo Harmônico , Bário , Curcumina/farmacologia , Luz , Fármacos Fotossensibilizantes/farmacologia , Staphylococcus aureus
7.
PLoS One ; 16(5): e0251780, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33989354

RESUMO

OBJECTIVE: Pandemic outbreaks necessitate effective responses to rapidly mitigate and control the spread of disease and eliminate the causative organism(s). While conventional chemical and biological solutions to these challenges are characteristically slow to develop and reach public availability; recent advances in device components operating at Super High Frequency (SHF) bands (3-30 GHz) of the electromagnetic spectrum enable novel approaches to such problems. METHODS: Based on experimentally documented evidence, a clinically relevant in situ radiation procedure to reduce viral loads in patients is devised and presented. Adapted to the currently available medical device technology to cause viral membrane fracture, this procedure selectively inactivates virus particles by forced oscillations arising from Structure Resonant Energy Transfer (SRET) thereby reducing infectivity and disease progression. RESULTS: Effective resonant frequencies for pleiomorphic Coronavirus SARS-CoV-2 is calculated to be in the 10-17 GHz range. Using the relation y = -3.308x + 42.9 with x and y representing log10 number of virus particles and the clinical throat swab Ct value respectively; in situ patient-specific exposure duration of ~15x minutes can be utilized to inactivate up to 100% of virus particles in the throat-lung lining, using an irradiation dose of 14.5 ± 1 W/m2; which is within the 200 W/m2 safety standard stipulated by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). CONCLUSIONS: The treatment is designed to make patients less contagious enhancing faster recoveries and enabling timely control of a spreading pandemic. ADVANCES IN KNOWLEDGE: The article provides practically applicable parameters for effective clinical adaptation of this technique to the current pandemic at different levels of healthcare infrastructure and disease prevention besides enabling rapid future viral pandemics response.


Assuntos
COVID-19/radioterapia , Transferência Ressonante de Energia de Fluorescência/métodos , Pandemias/prevenção & controle , Radiação não Ionizante , SARS-CoV-2/efeitos da radiação , COVID-19/virologia , Humanos , Pulmão/efeitos da radiação , Pulmão/virologia , Faringe/efeitos da radiação , Faringe/virologia , Carga Viral/efeitos da radiação
8.
PLoS One ; 16(1): e0245350, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33411831

RESUMO

BACKGROUND: The clinical efficiency of laser treatments is limited by the low penetration of visible light used in certain procedures like photodynamic therapy (PDT). Second Harmonic Generation (SHG) PDT is an innovative technique to overcome this limitation that enables the use of Near Infrared (NIR) light instead of visible light. NIR frequency bands present an optical window for deeper penetration into biological tissue. In this research, we compare the penetration depths of 405 and 808 nm continuous wave (CW) lasers and 808 nm pulsed wave (PW) laser in two different modes (high and low frequency). METHODS: Increasing thicknesses of beef and chicken tissue samples were irradiated under CW and PW lasers to determine penetration depths. RESULTS: The 808 nm CW laser penetrates 2.3 and 2.4 times deeper than the 405 nm CW laser in beef and chicken samples, respectively. 808 nm PW (pulse frequency-500 Hz) penetrates deeper than CW laser at the same wavelength. Further, increasing the pulse frequency achieves higher penetration depths. High frequency 808 nm PW (pulse frequency-71.4 MHz) penetrates 7.4- and 6.0-times deeper than 405 nm CW laser in chicken and beef, respectively. CONCLUSIONS: The results demonstrate the higher penetration depths of high frequency PW laser compared to low frequency PW laser, CW laser of the same wavelength and CW laser with half the wavelength. The results indicate that integrating SHG in the PDT process along with pulsed NIR light may allow the treatment of 6-7 times bigger tumours than conventional PDT using blue light.


Assuntos
Terapia com Luz de Baixa Intensidade/instrumentação , Animais , Bovinos , Galinhas , Desenho de Equipamento , Humanos , Raios Infravermelhos , Lasers , Terapia com Luz de Baixa Intensidade/métodos
9.
Traffic ; 18(2): 123-133, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27976831

RESUMO

The assembly of microtubule-based cytoskeleton propels the cilia and flagella growth. Previous studies have indicated that the kinesin-2 family motors transport tubulin into the cilia through intraflagellar transport. Here, we report a direct interaction between the C-terminal tail fragments of heterotrimeric kinesin-2 and α-tubulin1 isoforms in vitro. Blot overlay screen, affinity purification from tissue extracts, cosedimentation with subtilisin-treated microtubule and LC-ESI-MS/MS characterization of the tail-fragment-associated tubulin identified an association between the tail domains and α-tubulin1A/D isotype. The interaction was confirmed by Forster's resonance energy transfer assay in tissue-cultured cells. The overexpression of the recombinant tails in NIH3T3 cells affected the primary cilia growth, which was rescued by coexpression of a α-tubulin1 transgene. Furthermore, fluorescent recovery after photobleach analysis in the olfactory cilia of Drosophila indicated that tubulin is transported in a non-particulate form requiring kinesin-2. These results provide additional new insight into the mechanisms underlying selective tubulin isoform enrichment in the cilia.


Assuntos
Cílios/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Subunidades Proteicas/metabolismo , Tubulina (Proteína)/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico/fisiologia , Drosophila , Flagelos/metabolismo , Cinesinas , Camundongos , Microtúbulos/metabolismo , Células NIH 3T3 , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...