Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 188(1): 28, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33404780

RESUMO

A photoelectrochemical biosensing strategy for the highly sensitive detection of the flavonoid rutin was developed by synergizing the photoelectrocatalytic properties of hematite (α-Fe2O3) decorated with palladium nanoparticles (PdNPs) and the biocatalysis towards laccase-based reactions. The integration of α-Fe2O3.PdNPs with a polyphenol oxidase as a biorecognition element yields a novel biosensing platform. Under visible light irradiation, the photoactive biocomposite can generate a stable photocurrent, which was found to be directly dependent upon the concentration of rutin. Under the optimal experimental conditions, the cathodic photocurrent, measured at 0.33 V vs. Ag/AgCl, from the square-wave voltammograms presented a linear dependence on the rutin concentration within the range of 0.008-30.0 × 10-8 mol L-1 (sensitivity: 1.7 µA·(× 10-8 M-1)·cm-2), with an experimental detection limit (S/N = 3) of 8.4 × 10-11 mol L-1. The proposed biosensor device presented good selectivity towards rutin in the presence of various organic compounds and inorganic ions, demonstrating the potential application of this biosensing platform in complex matrices. This bioanalytical device also exhibited excellent operational and analytical properties, such as intra-day (standard deviation, SD = 0.21%) and inter-day (SD = 1.30%) repeatability, and long storage stability (SD = 2.80% over 30 days).Graphical abstract.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Compostos Férricos/química , Rutina/urina , Adulto , Enzimas Imobilizadas/química , Compostos Férricos/efeitos da radiação , Humanos , Lacase/química , Luz , Limite de Detecção , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/efeitos da radiação , Paládio/química , Paládio/efeitos da radiação , Processos Fotoquímicos , Chá/química , Vinho/análise , Adulto Jovem
2.
Nanoscale ; 12(23): 12281-12291, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32319490

RESUMO

We develop herein plasmonic-catalytic Au-IrO2 nanostructures with a morphology optimized for efficient light harvesting and catalytic surface area; the nanoparticles have a nanoflower morphology, with closely spaced Au branches all partially covered by an ultrathin (1 nm) IrO2 shell. This nanoparticle architecture optimizes optical features due to the interactions of closely spaced plasmonic branches forming electromagnetic hot spots, and the ultra-thin IrO2 layer maximizes efficient use of this expensive catalyst. This concept was evaluated towards the enhancement of the electrocatalytic performances towards the oxygen evolution reaction (OER) as a model transformation. The OER can play a central role in meeting future energy demands but the performance of conventional electrocatalysts in this reaction is limited by the sluggish OER kinetics. We demonstrate an improvement of the OER performance for one of the most active OER catalysts, IrO2, by harvesting plasmonic effects from visible light illumination in multimetallic nanoparticles. We find that the OER activity for the Au-IrO2 nanoflowers can be improved under LSPR excitation, matching best properties reported in the literature. Our simulations and electrocatalytic data demonstrate that the enhancement in OER activities can be attributed to an electronic interaction between Au and IrO2 and to the activation of Ir-O bonds by LSPR excited hot holes, leading to a change in the reaction mechanism (rate-determinant step) under visible light illumination.

3.
Food Chem ; 315: 126306, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32035315

RESUMO

In this work we propose the use of statistical mixture design in the construction of a biosensor device based on graphite oxide, platinum nanoparticles and biomaterials obtained from Botryosphaeria rhodina MAMB-05. The biosensor was characterized by electrochemical impedance spectroscopy. Under optimized experimental parameters by factorial design, the biosensor was applied to the voltammetric determination of chlorogenic acid (CGA) measured as 5-O-caffeoylquinic acid (5-CQA). The biosensor response was linear (R2 = 0.998) for 5-CQA in the concentration range 0.56-7.3 µmol L-1, with limit of detection and quantification of 0.18 and 0.59 µmol L-1, respectively. The new biosensing device was applied to quality control analysis based upon the determination of CGA content in specialty and traditional coffee beverages. The results indicated that specialty coffee had a significantly higher content of CGA. Principal component analysis of the voltammetric fingerprint of brewed coffees revealed that the laccase-based biosensor can be used for their discrimination.


Assuntos
Bebidas/análise , Ácido Clorogênico/análogos & derivados , Café/química , Ácido Quínico/análogos & derivados , Técnicas Biossensoriais/métodos , Ácido Clorogênico/análise , Nanopartículas Metálicas/química , Platina/química , Ácido Quínico/análise
4.
Bioelectrochemistry ; 129: 116-123, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31153126

RESUMO

In this study, (1→3)(1→6)-ß-D-glucan (botryosphaeran) from Botryosphaeria rhodina MAMB-05 was used, for the first time, to immobilize laccase on a carbon black paste electrode modified with gold nanoparticles. The physicochemical characterization of the proposed laccase-biosensor was performed using transmission electron microscopy and electrochemical impedance spectroscopy. The performance of this novel bio-device was evaluated by choosing hydroquinone as a typical model of a phenolic compound. For hydroquinone determination, experimental variables such as enzyme concentration, pH and operational parameters of the electroanalytical technique were optimized. From square-wave voltammograms, a linear dependence between the cathodic current peak and the hydroquinone concentration was observed within the range 2.00-56.5µmolL-1, with a theoretical detection limit of 0.474µmolL-1. The proposed method was successfully applied to determine hydroquinone in dermatological cream, and samples from biological and environmental niches. The proposed biosensor device presented good selectivity in the presence of uric acid, various inorganic ions, as well as other phenolic compounds, demonstrating the potential application of this biosensing platform in complex matrices. Operational and analytical stability of the laccase biosensor were evaluated, and demonstrated good intra-day (SD=0.3%) and inter-day (SD=3.4%) repeatability and long storage stability (SD=4.9%).


Assuntos
Ascomicetos/enzimologia , Técnicas Biossensoriais/métodos , Enzimas Imobilizadas/química , Glucanos/química , Hidroquinonas/análise , Lacase/química , Fuligem/química , Técnicas Biossensoriais/instrumentação , Estabilidade Enzimática , Desenho de Equipamento , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química
5.
RSC Adv ; 9(38): 22116-22123, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35518899

RESUMO

Gold nanoparticles (Au NPs) have been widely employed in catalysis. Here, we report on the synthesis and catalytic evaluation of a hybrid material composed of Au NPs deposited at the surface of magnetic cobalt ferrite (CoFe2O4). Our reported approach enabled the synthesis of well-defined Au/CoFe2O4 NPs. The Au NPs were uniformly deposited at the surface of the support, displayed spherical shape, and were monodisperse in size. Their catalytic performance was investigated towards the reduction of 4-nitrophenol and the selective oxidation of dimethylphenylsilane to dimethylphenylsilanol. The material was active towards both transformations. In addition, the LSPR excitation in Au NPs could be employed to enhance the catalytic performance, which was demonstrated in the 4-nitrophenol reduction. Finally, the magnetic support allowed for the easy recovery and reuse of the Au/CoFe2O4 NPs. In this case, our data showed that no significant loss of performance took place even after 10 reaction cycles in the oxidation of dimethylphenylsilane to dimethylphenylsilanol. Overall, our results indicate that Au/CoFe2O4 are interesting systems for catalytic applications merging high performances, recovery and re-use, and enhancement of activities under solar light illumination.

6.
Nano Lett ; 18(11): 7289-7297, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30352162

RESUMO

The localized surface plasmon resonance (LSPR) excitation in plasmonic nanoparticles has been used to accelerate several catalytic transformations under visible-light irradiation. In order to fully harness the potential of plasmonic catalysis, multimetallic nanoparticles containing a plasmonic and a catalytic component, where LSPR-excited energetic charge carriers and the intrinsic catalytic active sites work synergistically, have raised increased attention. Despite several exciting studies observing rate enhancements, controlling reaction selectivity remains very challenging. Here, by employing multimetallic nanoparticles combining Au, Ag, and Pt in an Au@Ag@Pt core-shell and an Au@AgPt nanorattle architectures, we demonstrate that reaction selectivity of a sequential reaction can be controlled under visible light illumination. The control of the reaction selectivity in plasmonic catalysis was demonstrated for the hydrogenation of phenylacetylene as a model transformation. We have found that the localized interaction between the triple bond in phenylacetylene and the Pt nanoparticle surface enables selective hydrogenation of the triple bond (relative to the double bond in styrene) under visible light illumination. Atomistic calculations show that the enhanced selectivity toward the partial hydrogenation product is driven by distinct adsorption configurations and charge delocalization of the reactant and the reaction intermediate at the catalyst surface. We believe these results will contribute to the use of plasmonic catalysis to drive and control a wealth of selective molecular transformations under ecofriendly conditions and visible light illumination.

7.
Chem Soc Rev ; 47(20): 7783-7817, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30234202

RESUMO

The use of sunlight to drive chemical reactions via photocatalysis is of paramount importance towards a sustainable future. Among several photocatalysts, earth-abundant polymeric carbon nitride (PCN, often wrongly named g-C3N4) has emerged as an attractive candidate due to its ability to absorb light efficiently in the visible and near-infrared ranges, chemical stability, non-toxicity, straightforward synthesis, and versatility as a platform for constructing hybrid materials. Especially, hybrids with metal nanoparticles offer the unique possibility of combining the catalytic, electronic, and optical properties of metal nanoparticles with PCN. Here, we provide a comprehensive overview of PCN materials and their hybrids, emphasizing heterostructures with metal nanoparticles. We focus on recent advances encompassing synthetic strategies, design principles, photocatalytic applications, and charge-transfer mechanisms. We also discuss how the localized surface plasmon resonance (LSPR) effect of some noble metals NPs (e.g. Au, Ag, and Cu), bimetallic compositions, and even non-noble metals NPs (e.g., Bi) synergistically contribute with PCN in light-driven transformations. Finally, we provide a perspective on the field, in which the understanding of the enhancement mechanisms combined with truly controlled synthesis can act as a powerful tool to the establishment of the design principles needed to take the field of photocatalysis with PCN to a new level, where the desired properties and performances can be planned in advance, and the target material synthesized accordingly.

8.
Chemistry ; 24(47): 12330-12339, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-29365214

RESUMO

The localized surface plasmon resonance (LSPR) excitation in plasmonic nanoparticles can enhance or mediate chemical transformations. Increased reaction rates for several reactions have been reported due to this phenomenon; however, the fundamental understanding of mechanisms and factors that affect activities remains limited. Here, by investigating hydrogenation reactions as a model transformation and employing different reducing agents, H2 and NaBH4 , which led to different hydrogenation reaction pathways, we observed that plasmonic excitation of Au nanoparticle catalysts can lead to negative effects over the activities. The underlying physical reason was explored using density functional theory calculations. We observed that positive versus negative effects on the plasmonic catalytic activity is reaction-pathway dependent. These results shed important insights on our current understanding of plasmonic catalysis, demonstrating reaction pathways must be taken into account for the design of plasmonic nanocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...