RESUMO
Guiana dolphins, Sotalia guianensis, are vulnerable to extinction along their distribution on the Brazilian coast and assessing chemical pollution is of utmost importance for their conservation. For this study, 51 carcasses of Guiana dolphins were sampled across the Brazilian coast to investigate legacy and emerging brominated flame retardants (BFRs) as well as the naturally-produced MeO-BDEs. PBDEs and MeO-BDEs were detected in all samples analyzed, whereas emerging BFRs were detected in 16 % of the samples, all in Rio de Janeiro state. PBDE concentrations varied between 2.24 and 799 ng.g-1 lipid weight (lw), emerging BFRs between 0.12 and 1.51 ng.g-1 lw and MeO-BDEs between 3.82 and 10,247 ng.g-1 lw. Concentrations of legacy and emerging BFRs and natural compounds varied considerably according to the sampling site and reflected both the local anthropogenic impact of the region and the diversity/mass of biosynthesizers. The PBDE concentrations are lower than what was found for delphinids in the Northern Hemisphere around the same sampling period and most sampling sites presented mean concentrations lower than the limits for endocrine disruption known to date for marine mammals of 460 ng.g-1 lw, except for sampled from Santa Catarina state, in Southern Brazil. Conversely, MeO-BDE concentrations are higher than those of the Northern Hemisphere, particularly close to the Abrolhos Bans and Royal Charlotte formation, that are hotspots for biodiversity. Despite the elevated concentrations reported for this group, there is not much information regarding the effects of such elevated concentrations for these marine mammals. The distinct patterns observed along the Brazilian coast show that organobrominated compounds can be used to identify the ecological segregation of delphinids and that conservation actions should be planned considering the local threats.
Assuntos
Golfinhos , Retardadores de Chama , Animais , Retardadores de Chama/análise , Brasil , Monitoramento Ambiental , Cetáceos , Éteres Difenil Halogenados/análiseRESUMO
The franciscana (Pontoporia blainvillei) is the most threatened small cetacean in the South Atlantic. In this study we report the development of 13 microsatellite markers for franciscanas through next-generation sequencing, and the characterization of those loci in 38 samples from the species' northernmost population (Espírito Santo, Brazil). Besides providing diversity indices for the new, specific loci, we also report on the transferability of heterologous loci which had not been screened in franciscanas before, and review all loci used in previous studies. Expected heterozygosity in the new loci ranged between 0.107 and 0.595, and all but one were in Hardy Weinberg Equilibrium. These are the first microsatellite loci isolated from franciscanas, and they are an important addition to heterologous markers that were available previously.
Assuntos
Golfinhos/genética , Espécies em Perigo de Extinção , Repetições de Microssatélites/genética , Animais , Loci Gênicos , Genética Populacional , Polimorfismo GenéticoRESUMO
We provide pathological, immunohistochemical and molecular evidence of cetacean morbillivirus (CeMV) infection in a live-stranded adult female killer whale (Orcinus orca), which stranded alive in Espírito Santo State, Brazil, in 2014. Although attempts were made to release the animal, it stranded again and died. The main pathological findings were severe pulmonary oedema, pleural petechiation, multifocal, lymphoplasmacytic meningoencephalitis and leptomeningomyelitis with perivascular cuffing and gliosis, chronic lymphocytic bronchointerstitial pneumonia and multicentric lymph node and splenic lymphoid depletion. Other pathological findings were associated with the 'live-stranding stress response'. Immunohistochemical analysis revealed multifocal morbilliviral antigen in neurons and astrocytes, and in pneumocytes, histiocytes and leukocytes in the lung. CeMV was detected by a novel reverse transcriptase polymerase chain reaction method in the brain and kidney. Phylogenetic analysis of part of the morbillivirus phosphoprotein gene indicates that the virus is similar to the Guiana dolphin (Sotalia guianensis) morbillivirus strain, known to affect cetaceans along the coast of Brazil. To the authors' knowledge, this is the first report of morbillivirus disease in killer whales.
Assuntos
Infecções por Morbillivirus , Morbillivirus , Orca , Animais , Brasil , Evolução Fatal , Feminino , Infecções por Morbillivirus/veterinária , FilogeniaRESUMO
A previous investigation of our research team has demonstrated the suitability of using hepatic total tin (ΣSn) concentrations for evaluating dolphin exposure to organotins (OTs). The present study develops the previous technique into three different approaches that comprise data: (1) on hepatic ΣSn concentrations of 121 Guiana dolphins (Sotalia guianensis) from five different coastal areas (CAs): (2) on ΣSn, δ13C and δ15N for 40 dolphins from Rio de Janeiro state (RJ), including ten different delphinid species; as well as (3) on hepatic ΣSn concentrations and δ15N values on 31 individuals from five different fish species from Sepetiba Bay (SB, Rio de Janeiro-RJ, Brazil). Hepatic ΣSn concentrations of Guiana dolphins from Guanabara Bay (GB, RJ) were significantly higher than those found in other four CAs from S and SE Brazilian regions. Significant positive correlations were found between ΣSn concentrations and δ13C data in delphinid species, demonstrating a coast-ocean gradient in dolphin exposure to OTs in RJ state. Significant and positive correlations were observed between ΣSn concentrations and both δ15N and Trophic Position (TP) values of fish, as well as high values were found for Trophic Magnification Factor (TMF = 3.03) and Trophic Magnification Slope (TMS = 0.14), demonstrating OT biomagnification in SB ichthyofauna.
Assuntos
Golfinhos , Poluentes Químicos da Água , Animais , Bioacumulação , Brasil , Proteínas de Ligação a DNA , Monitoramento Ambiental , Peixes , Isótopos , Estanho , Poluentes Químicos da Água/análiseRESUMO
The presence of pyrethroid compounds in hepatic tissue of Guiana dolphins (Sotalia guianensis) is reported for the first time. Twelve pyrethroids were determined in 50 animals from eight locations of the Brazilian coast. The highest average concentration of total pyrethroids (∑PYR) was 1166 ng.g-1 lw, with values ranging from 148 to 5918 ng.g-1 lw, in Ilha Grande Bay, Rio de Janeiro State, while the Espírito Santo State had the highest median, 568 ng.g-1 lw. Permethrin was the predominant compound in most areas, contributing for 42% to 81% of the ∑PYR, whereas cypermethrin was the most abundant compound in Guanabara and Sepetiba bays (79% and 81%, respectively), both located in Rio de Janeiro State. Biological factors were not correlated with pyrethroids concentration. Tetramethrin and es/fenvalerate compounds were negatively correlated to the age, suggesting degradation/metabolization capacity in these animals that increases throughout life. Despite being metabolized and excreted, the wide use of these pollutants is reflected in relevant concentrations found in Guiana dolphins. This is the first study evaluating pyrethroids in a representative number of hepatic samples and covering >2600 km of coast. The overall lack of information on pyrethroids in cetaceans highlights the importance of understanding the profile and distribution of these pollutants in dolphins which exclusively inhabit the Southwestern Atlantic coast.
Assuntos
Golfinhos , Inseticidas , Piretrinas , Poluentes Químicos da Água/análise , Animais , Brasil , Biomarcadores AmbientaisRESUMO
Guiana dolphin is the top predator of highest toxicological concern in Brazil and many studies on levels of persistent, bioaccumulative, and toxicant (PBT) pollutants have been performed on the species. However, due to high costs of the analyses, only one investigation comprised the determination of dioxins and related compounds (DRCs) in Guiana dolphin tissues. The dioxin responsive-chemically activated luciferase gene expression (DR-CALUX(®)) cell bioassay was used in the present study for the analyses of hepatic samples from 28 male Guiana dolphins in order to screen estuarine environments for DRCs, comprising three regions (Northeastern, Southeastern, and Southern) and four states [Paraná (PR), Rio de Janeiro (RJ), Espírito Santo (ES), and Ceará (CE)] of Brazil. High bioanalytical equivalent (BEQ) concentrations [dioxins (pg BEQ/g lipid)] were found, varying from 1.94 to 15.6 pg BEQ/g. A significant negative correlation between BEQ concentrations and total length was found in Guiana dolphins from Brazil (all analysed dolphins). This pattern also was verified for RJ state, pointing to (1) chemically induced developmental disruption or to (2) increasing efficiency of the detoxifying activity with the growth of the animal. Comparison was performed with literature data and significantly higher BEQ levels were found in Brazilian Guiana dolphins than in those reported for North Sea harbour porpoises. Higher levels were found in Southeastern (the most PBT-contaminated area of the country) than in Southern region. However, it is not possible to affirm that Guiana dolphins are more contaminated by DRCs in SE than in S region, because individuals were lengthier in S than in SE region. Our results seem to have mirrored dolphin exposure to PCBs in Brazil according to the literature. Further studies are required for investigating the hypotheses 1 and 2 mentioned above.
Assuntos
Dioxinas/metabolismo , Golfinhos/metabolismo , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/metabolismo , Animais , Bioensaio , Brasil , MasculinoRESUMO
Franciscanas are the most endangered dolphins in the Southwestern Atlantic. Due to their coastal and estuarine habits, franciscanas suffer from extensive fisheries bycatch, as well as from habitat loss and degradation. Four Franciscana Management Areas (FMA), proposed based on biology, demography, morphology and genetic data, were incorporated into management planning and in the delineation of research efforts. We re-evaluated that proposal through the analysis of control region sequences from franciscanas throughout their distribution range (Nâ=â162), including novel sequences from the northern limit of the species and two other previously unsampled localities in Brazil. A deep evolutionary break was observed between franciscanas from the northern and southern portions of the species distribution, indicating that they must be managed as two Evolutionarily Significant Units (ESU). Furthermore, additional FMAs should be recognised to accommodate the genetic differentiation found in each ESU. These results have immediate consequences for the conservation and management of this endangered species.
Assuntos
Conservação dos Recursos Naturais/métodos , Golfinhos/crescimento & desenvolvimento , Ecossistema , Espécies em Perigo de Extinção , Análise de Variância , Animais , Argentina , Oceano Atlântico , Teorema de Bayes , Brasil , DNA Mitocondrial/genética , Golfinhos/genética , Pesqueiros , Variação Genética , Geografia , Haplótipos , Modelos Teóricos , Densidade Demográfica , Dinâmica Populacional , Fatores de Risco , UruguaiRESUMO
Blubber samples from three delphinid species (false killer whale, Guiana and rough-toothed dolphin), as well as liver samples from franciscana dolphins were analyzed for dioxins and related compounds (DRCs). Samples were collected from 35 cetaceans stranded or incidentally captured in a highly industrialized and urbanized area (Southeast and Southern Brazilian regions). Dioxin-like PCBs accounted for over 83% of the total TEQ for all cetaceans. Non-ortho coplanar PCBs, for franciscanas (82%), and mono-ortho PCBs (up to 80%), for delphinids, constituted the groups of highest contribution to total TEQ. Regarding franciscana dolphins, significant negative correlations were found between total length (TL) and three variables, ΣTEQ-DRCs, ΣTEQ-PCDF and ΣTEQ non-ortho PCB. An increasing efficiency of the detoxifying activity with the growth of the animal may be a plausible explanation for these findings. This hypothesis is reinforced by the significant negative correlation found between TL and PCB126/PCB169 concentration ratio. DRC concentrations (ng/g lipids) varied from 36 to 3006, for franciscana dolphins, as well as from 356 to 30,776, for delphinids. The sum of dioxin-like and indicator PCBs varied from 34,662 to 279,407 ng/g lipids, for Guiana dolphins from Rio de Janeiro state, which are among the highest PCB concentrations ever reported for cetaceans. The high concentrations found in our study raise concern not only on the conservation of Brazilian coastal cetaceans, but also on the possibility of human health problem due to consumption of fish from Brazilian estuaries.
Assuntos
Benzofuranos/análise , Golfinhos/metabolismo , Bifenilos Policlorados/análise , Dibenzodioxinas Policloradas/análogos & derivados , Poluentes Químicos da Água/análise , Tecido Adiposo/química , Animais , Oceano Atlântico , Brasil , Dibenzofuranos Policlorados , Feminino , Fígado/química , Masculino , Dibenzodioxinas Policloradas/análise , Fatores SexuaisRESUMO
In Brazil, there is no restriction to the use of organotins (OTs). Previous investigations have shown that hepatic SigmaSn in cetaceans is predominantly organic. Hepatic SigmaSn concentrations were determined by GFAAS in 67 cetaceans (13 species) that stranded on Rio de Janeiro (RJ) and Espirito Santo (ES) states. Concentrations (in ng/g wet wt.) of marine tucuxis (n=20) from the highly contaminated Guanabara Bay (in RJ) varied from 1703 to 9638. Concentrations of three marine tucuxi foetuses and one newborn calf (all from Guanabara Bay) varied between 431 and 2107. Contrastingly, the maximum level among 19 oceanic dolphins was 346, and 15 out of these 19 specimens presented concentrations below detection limit. The levels of Sn in six marine tucuxis from a less contaminated area (ES) varied from below detection limit to 744. Comparing to the literature, coastal cetaceans from Brazil appear to be highly exposed to OTs.