Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 467, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627317

RESUMO

Given the inherent complexity of the human nervous system, insight into the dynamics of brain activity can be gained from studying smaller and simpler organisms. While some of the potential target organisms are simple enough that their behavioural and structural biology might be well-known and understood, others might still lead to computationally intractable models that require extensive resources to simulate. Since such organisms are frequently only acting as proxies to further our understanding of underlying phenomena or functionality, often one is not interested in the detailed evolution of every single neuron in the system. Instead, it is sufficient to observe the subset of neurons that capture the effect that the profound nonlinearities of the neuronal system have in response to different stimuli. In this paper, we consider the well-known nematode Caenorhabditis elegans and seek to investigate the possibility of generating lower complexity models that capture the system's dynamics with low error using only measured or simulated input-output information. Such models are often termed black-box models. We show how the nervous system of C. elegans can be modelled and simulated with data-driven models using different neural network architectures. Specifically, we target the use of state-of-the-art recurrent neural network architectures such as Long Short-Term Memory and Gated Recurrent Units and compare these architectures in terms of their properties and their accuracy (Root Mean Square Error), as well as the complexity of the resulting models. We show that Gated Recurrent Unit models with a hidden layer size of 4 are able to accurately reproduce the system response to very different stimuli. We furthermore explore the relative importance of their inputs as well as scalability to more scenarios.


Assuntos
Caenorhabditis elegans , Fenômenos Fisiológicos do Sistema Nervoso , Animais , Humanos , Caenorhabditis elegans/fisiologia , Redes Neurais de Computação , Neurônios/fisiologia , Aprendizagem
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4174-4179, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892144

RESUMO

In recent years, modeling neurons and neuronal collections with high accuracy have become central issues of neuroscience. The development of efficient algorithms for their simulation as well as the increase in computational power and parallelization need to keep up with the quantity and complexity of novel recordings and reconstructions reported by the experimental neuroscientists. The extraction of low-order equivalents that capture the essential aspects of the high-accuracy models is an essential part of the simulation process. The complexity of these models require the use of black-box data-oriented reduction approaches. We create a detailed model of the nervous system of a very known organism, C. Elegans, and show that it can be reduced using a modified data-driven model reduction method up to the order of 4 with very little loss in accuracy. The reduced model is able to predict the behaviour of the original for time ranges beyond the data used for the reduction.


Assuntos
Caenorhabditis elegans , Sistema Nervoso , Algoritmos , Animais , Simulação por Computador , Neurônios
3.
J Comput Neurosci ; 47(2-3): 141-166, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659570

RESUMO

The paper presents a hierarchical series of computational models for myelinated axonal compartments. Three classes of models are considered, either with distributed parameters (2.5D EQS-ElectroQuasi Static, 1D TL-Transmission Lines) or with lumped parameters (0D). They are systematically analyzed with both analytical and numerical approaches, the main goal being to identify the best procedure for order reduction of each case. An appropriate error estimator is proposed in order to assess the accuracy of the models. This is the foundation of a procedure able to find the simplest reduced model having an imposed precision. The most computationally efficient model from the three geometries proved to be the analytical 1D one, which is able to have accuracy less than 0.1%. By order reduction with vector fitting, a finite model is generated with a relative difference of 10- 4 for order 5. The dynamical models thus extracted allow an efficient simulation of neurons and, consequently, of neuronal circuits. In such situations, the linear models of the myelinated compartments coupled with the dynamical, non-linear models of the Ranvier nodes, neuronal body (soma) and dendritic tree give global reduced models. In order to ease the simulation of large-scale neuronal systems, the sub-models at each level, including those of myelinated compartments should have the lowest possible order. The presented procedure is a first step in achieving simulations of neural systems with accuracy control.


Assuntos
Axônios/fisiologia , Simulação por Computador , Modelos Neurológicos , Bainha de Mielina/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Encéfalo/fisiologia , Nós Neurofibrosos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...