Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Transl Psychiatry ; 13(1): 118, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031222

RESUMO

The frontal pole (Brodmann area 10, BA10) is the largest cytoarchitectonic region of the human cortex, performing complex integrative functions. BA10 undergoes intensive adolescent grey matter pruning prior to the age of onset for bipolar disorder (BP) and schizophrenia (SCHIZ), and its dysfunction is likely to underly aspects of their shared symptomology. In this study, we investigated the role of BA10 neurotransmission-related gene expression in BP and SCHIZ. We performed qPCR to measure the expression of 115 neurotransmission-related targets in control, BP, and SCHIZ postmortem samples (n = 72). We chose this method for its high sensitivity to detect low-level expression. We then strengthened our findings by performing a meta-analysis of publicly released BA10 microarray data (n = 101) and identified sources of convergence with our qPCR results. To improve interpretation, we leveraged the unusually large database of clinical metadata accompanying our samples to explore the relationship between BA10 gene expression, therapeutics, substances of abuse, and symptom profiles, and validated these findings with publicly available datasets. Using these convergent sources of evidence, we identified 20 neurotransmission-related genes that were differentially expressed in BP and SCHIZ in BA10. These results included a large diagnosis-related decrease in two important therapeutic targets with low levels of expression, HTR2B and DRD4, as well as other findings related to dopaminergic, GABAergic and astrocytic function. We also observed that therapeutics may produce a differential expression that opposes diagnosis effects. In contrast, substances of abuse showed similar effects on BA10 gene expression as BP and SCHIZ, potentially amplifying diagnosis-related dysregulation.


Assuntos
Transtorno Bipolar , Esquizofrenia , Humanos , Adolescente , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Esquizofrenia/metabolismo , Lobo Frontal/metabolismo , Expressão Gênica , Transmissão Sináptica/genética
2.
Complex Psychiatry ; 8(3-4): 90-98, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36778651

RESUMO

Introduction: Large somatic deletions of mitochondrial DNA (mtDNA) accumulate with aging in metabolically active tissues such as the brain. We have cataloged the breakpoints and frequencies of large mtDNA deletions in the human brain. Methods: We quantified 112 high-frequency mtDNA somatic deletions across four human brain regions with the Splice-Break2 pipeline. In addition, we utilized PLINK/Seq to test the association of mitochondrial genotypes with the abundance of these high-frequency mtDNA deletions. A conservative p value threshold of 5E-08 was used to find the significant loci. Results: One mtDNA SNP (T14798C) was significantly associated with mtDNA deletions in two brain regions, the dorsolateral prefrontal cortex (DLPFC) and the superior temporal gyrus. Since the DLPFC showed the most robust association between T14798C and two deletion breakpoints (7816-14807 and 5462-14807), this association was tested in the DLPFC of a replication sample and validated the first results. Incorporating the C allele at 14,798 bp increased the perfect/imperfect length of the repeat at the 3' breakpoint of the two associated deletions. Conclusion: This is the first study to identify the association of mtDNA SNP with large mtDNA deletions in the human brain. The T14798C allele located in the MT-CYB gene is a common polymorphism that occurs in several mitochondrial haplogroups. We hypothesize that the T14798C association with two deletions occurs by extending the repeat length around the 3' deletion breakpoints. This simple mechanism suggests that mtDNA SNPs can affect the mitochondrial genome structure, especially in brain where high levels of reactive oxygen species lead to deletion accumulation with aging.

3.
Transl Psychiatry ; 12(1): 353, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042222

RESUMO

Mitochondrial dysfunction is a neurobiological phenomenon implicated in the pathophysiology of schizophrenia and bipolar disorder that can synergistically affect synaptic neurotransmission. We hypothesized that schizophrenia and bipolar disorder share molecular alterations at the mitochondrial and synaptic levels. Mitochondria DNA (mtDNA) copy number (CN), mtDNA common deletion (CD), mtDNA total deletion, complex I activity, synapse number, and synaptic mitochondria number were studied in the postmortem human dorsolateral prefrontal cortex (DLPFC), superior temporal gyrus (STG), primary visual cortex (V1), and nucleus accumbens (NAc) of controls (CON), and subjects with schizophrenia (SZ), and bipolar disorder (BD). The results showed (i) the mtDNA CN is significantly higher in DLPFC of both SZ and BD, decreased in the STG of BD, and unaltered in V1 and NAc of both SZ and BD; (ii) the mtDNA CD is significantly higher in DLPFC of BD while unaltered in STG, V1, and NAc of both SZ and BD; (iii) The total deletion burden is significantly higher in DLPFC in both SZ and BD while unaltered in STG, V1, and NAc of SZ and BD; (iv) Complex I activity is significantly lower in DLPFC of both SZ and BD, which is driven by the presence of medications, with no alteration in STG, V1, and NAc. In addition, complex I protein concentration, by ELISA, was decreased across three cortical regions of SZ and BD subjects; (v) The number of synapses is decreased in DLPFC of both SZ and BD, while the synaptic mitochondria number was significantly lower in female SZ and female BD compared to female controls. Overall, these findings will pave the way to understand better the pathophysiology of schizophrenia and bipolar disorder for therapeutic interventions.


Assuntos
Transtorno Bipolar , Esquizofrenia , Transtorno Bipolar/metabolismo , Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , Feminino , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Esquizofrenia/metabolismo , Sinapses/metabolismo
4.
Transl Psychiatry ; 12(1): 159, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422091

RESUMO

Suicides have increased to over 48,000 deaths yearly in the United States. Major depressive disorder (MDD) is the most common diagnosis among suicides, and identifying those at the highest risk for suicide is a pressing challenge. The objective of this study is to identify changes in gene expression associated with suicide in brain and blood for the development of biomarkers for suicide. Blood and brain were available for 45 subjects (53 blood samples and 69 dorsolateral prefrontal cortex (DLPFC) samples in total). Samples were collected from MDD patients who died by suicide (MDD-S), MDDs who died by other means (MDD-NS) and non-psychiatric controls. We analyzed gene expression using RNA and the NanoString platform. In blood, we identified 14 genes which significantly differentiated MDD-S versus MDD-NS. The top six genes differentially expressed in blood were: PER3, MTPAP, SLC25A26, CD19, SOX9, and GAR1. Additionally, four genes showed significant changes in brain and blood between MDD-S and MDD-NS; SOX9 was decreased and PER3 was increased in MDD-S in both tissues, while CD19 and TERF1 were increased in blood but decreased in DLPFC. To our knowledge, this is the first study to analyze matched blood and brain samples in a well-defined population of MDDs demonstrating significant differences in gene expression associated with completed suicide. Our results strongly suggest that blood gene expression is highly informative to understand molecular changes in suicide. Developing a suicide biomarker signature in blood could help health care professionals to identify subjects at high risk for suicide.


Assuntos
Transtorno Depressivo Maior , Suicídio , Sistemas de Transporte de Aminoácidos/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio , Transtorno Depressivo Maior/psicologia , Humanos , Córtex Pré-Frontal/metabolismo , Suicídio/psicologia
5.
Nature ; 604(7906): 509-516, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35396579

RESUMO

Rare coding variation has historically provided the most direct connections between gene function and disease pathogenesis. By meta-analysing the whole exomes of 24,248 schizophrenia cases and 97,322 controls, we implicate ultra-rare coding variants (URVs) in 10 genes as conferring substantial risk for schizophrenia (odds ratios of 3-50, P < 2.14 × 10-6) and 32 genes at a false discovery rate of <5%. These genes have the greatest expression in central nervous system neurons and have diverse molecular functions that include the formation, structure and function of the synapse. The associations of the NMDA (N-methyl-D-aspartate) receptor subunit GRIN2A and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor subunit GRIA3 provide support for dysfunction of the glutamatergic system as a mechanistic hypothesis in the pathogenesis of schizophrenia. We observe an overlap of rare variant risk among schizophrenia, autism spectrum disorders1, epilepsy and severe neurodevelopmental disorders2, although different mutation types are implicated in some shared genes. Most genes described here, however, are not implicated in neurodevelopment. We demonstrate that genes prioritized from common variant analyses of schizophrenia are enriched in rare variant risk3, suggesting that common and rare genetic risk factors converge at least partially on the same underlying pathogenic biological processes. Even after excluding significantly associated genes, schizophrenia cases still carry a substantial excess of URVs, which indicates that more risk genes await discovery using this approach.


Assuntos
Mutação , Transtornos do Neurodesenvolvimento , Esquizofrenia , Estudos de Casos e Controles , Exoma , Predisposição Genética para Doença/genética , Humanos , Transtornos do Neurodesenvolvimento/genética , Receptores de N-Metil-D-Aspartato/genética , Esquizofrenia/genética
6.
Nat Genet ; 51(5): 793-803, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043756

RESUMO

Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study (GWAS) including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P < 1 × 10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (P < 5 × 10-8) in the discovery GWAS were not genome-wide significant in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis, 30 loci were genome-wide significant, including 20 newly identified loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene sets, including regulation of insulin secretion and endocannabinoid signaling. Bipolar I disorder is strongly genetically correlated with schizophrenia, driven by psychosis, whereas bipolar II disorder is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential biological mechanisms for bipolar disorder.


Assuntos
Transtorno Bipolar/genética , Loci Gênicos , Transtorno Bipolar/classificação , Estudos de Casos e Controles , Transtorno Depressivo Maior/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Transtornos Psicóticos/genética , Esquizofrenia/genética , Biologia de Sistemas
7.
Nucleic Acids Res ; 47(10): e59, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30869147

RESUMO

Deletions in the 16.6 kb mitochondrial genome have been implicated in numerous disorders that often display muscular and/or neurological symptoms due to the high-energy demands of these tissues. We describe a catalogue of 4489 putative mitochondrial DNA (mtDNA) deletions, including their frequency and relative read rate, using a combinatorial approach of mitochondria-targeted PCR, next-generation sequencing, bioinformatics, post-hoc filtering, annotation, and validation steps. Our bioinformatics pipeline uses MapSplice, an RNA-seq splice junction detection algorithm, to detect and quantify mtDNA deletion breakpoints rather than mRNA splices. Analyses of 93 samples from postmortem brain and blood found (i) the 4977 bp 'common deletion' was neither the most frequent deletion nor the most abundant; (ii) brain contained significantly more deletions than blood; (iii) many high frequency deletions were previously reported in MitoBreak, suggesting they are present at low levels in metabolically active tissues and are not exclusive to individuals with diagnosed mitochondrial pathologies; (iv) many individual deletions (and cumulative metrics) had significant and positive correlations with age and (v) the highest deletion burdens were observed in major depressive disorder brain, at levels greater than Kearns-Sayre Syndrome muscle. Collectively, these data suggest the Splice-Break pipeline can detect and quantify mtDNA deletions at a high level of resolution.


Assuntos
Biologia Computacional/métodos , DNA Mitocondrial/genética , Transtorno Depressivo Maior/genética , Sítios de Splice de RNA/genética , Análise de Sequência de RNA/métodos , Deleção de Sequência , Algoritmos , Sequência de Bases , Encéfalo/metabolismo , Encéfalo/patologia , Quebras de DNA , DNA Mitocondrial/química , Transtorno Depressivo Maior/sangue , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase
8.
PLoS One ; 13(7): e0200003, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30016334

RESUMO

Psychiatric illness is unlikely to arise from pathology occurring uniformly across all cell types in affected brain regions. Despite this, transcriptomic analyses of the human brain have typically been conducted using macro-dissected tissue due to the difficulty of performing single-cell type analyses with donated post-mortem brains. To address this issue statistically, we compiled a database of several thousand transcripts that were specifically-enriched in one of 10 primary cortical cell types in previous publications. Using this database, we predicted the relative cell type content for 833 human cortical samples using microarray or RNA-Seq data from the Pritzker Consortium (GSE92538) or publicly-available databases (GSE53987, GSE21935, GSE21138, CommonMind Consortium). These predictions were generated by averaging normalized expression levels across transcripts specific to each cell type using our R-package BrainInABlender (validated and publicly-released on github). Using this method, we found that the principal components of variation in the datasets strongly correlated with the predicted neuronal/glial content of the samples. This variability was not simply due to dissection-the relative balance of brain cell types appeared to be influenced by a variety of demographic, pre- and post-mortem variables. Prolonged hypoxia around the time of death predicted increased astrocytic and endothelial gene expression, illustrating vascular upregulation. Aging was associated with decreased neuronal gene expression. Red blood cell gene expression was reduced in individuals who died following systemic blood loss. Subjects with Major Depressive Disorder had decreased astrocytic gene expression, mirroring previous morphometric observations. Subjects with Schizophrenia had reduced red blood cell gene expression, resembling the hypofrontality detected in fMRI experiments. Finally, in datasets containing samples with especially variable cell content, we found that controlling for predicted sample cell content while evaluating differential expression improved the detection of previously-identified psychiatric effects. We conclude that accounting for cell type can greatly improve the interpretability of transcriptomic data.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Perfilação da Expressão Gênica , Transtornos Mentais/genética , Transtornos Mentais/patologia , Fatores Etários , Animais , Feminino , Ontologia Genética , Humanos , Masculino , Transtornos Mentais/diagnóstico , Transtornos Mentais/mortalidade , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos
9.
Biol Psychiatry ; 84(8): 555-562, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29861095

RESUMO

BACKGROUND: While downregulation of several growth factors in major depressive disorder is well established, less attention has been paid to the upregulation of other growth factors. Yet, upregulated growth factors may offer better therapeutic targets. We show that connective tissue growth factor (CTGF) represents a target based on its upregulation in major depressive disorder and studies in animal models implicating it in negative affect. METHODS: CTGF gene expression was first evaluated in the postmortem human amygdala. The findings were followed up in outbred rats and in two rat lines that were selectively bred for differences in novelty-seeking and anxiety behavior (bred low responders and bred high responders). We studied the impact of social defeat and early-life treatment with fibroblast growth factor 2 on CTGF expression. Finally, we assessed the ability of an anti-CTGF antibody (FG-3019) to alter CTGF expression and emotionality. RESULTS: In the human amygdala, CTGF expression was significantly increased in major depressive disorder compared with control subjects. CTGF expression was also significantly increased in the dentate gyrus of adult bred low responders compared with bred high responders. Social defeat stress in bred low responders significantly increased CTGF expression in the dentate gyrus. Early-life fibroblast growth factor 2, a treatment that reduces anxiety-like behavior throughout life, decreased CTGF expression in the adult dentate gyrus. In outbred rats, CTGF administration increased depression-like behavior. Chronic treatment with FG-3019 decreased CTGF expression, and acute and chronic treatment was antidepressant. CONCLUSIONS: This study is the first to implicate CTGF as a prodepressant molecule that could serve as a target for the development of novel therapeutics.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Ansiedade/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Transtorno Depressivo Maior/genética , Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Adulto , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Animais , Anticorpos Monoclonais Humanizados , Ansiedade/patologia , Fator de Crescimento do Tecido Conjuntivo/antagonistas & inibidores , Giro Denteado/efeitos dos fármacos , Giro Denteado/fisiologia , Transtorno Depressivo Maior/patologia , Modelos Animais de Doenças , Comportamento Exploratório , Feminino , Perfilação da Expressão Gênica , Hipocampo/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Ratos
10.
Mol Neuropsychiatry ; 3(3): 157-169, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29594135

RESUMO

Subjects with schizophrenia (SZ) and bipolar disorder (BD) show decreased protein and transcript levels for mitochondrial complex I. In vitro results suggest antipsychotic and antidepressant drugs may be responsible. We measured complex I activity in BD, SZ, and controls and presence of antipsychotic and antidepressant medications, mitochondrial DNA (mtDNA) copy number, and the mtDNA "common deletion" in the brain. Complex I activity in the prefrontal cortex was decreased by 45% in SZ compared to controls (p = 0.02), while no significant difference was found in BD. Complex I activity was significantly decreased (p = 0.01) in pooled cases (SZ and BD) that had detectable psychotropic medications and drugs compared to pooled cases with no detectable levels. Subjects with age at onset in their teens and psychotropic medications showed decreased (p < 0.05) complex I activity compared to subjects with an adult age at onset. Both SZ and BD groups displayed significant increases (p < 0.05) in mtDNA copy number compared to controls; however, common deletion burden was not altered. Complex I deficiency is found in SZ brain tissue, and psychotropic medications may play a role in mitochondrial dysfunction. Studies of medication-free first-episode psychosis patients are needed to elucidate whether mitochondrial pathophysiology occurs independent of medication effects.

11.
Genome Med ; 9(1): 72, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28754123

RESUMO

BACKGROUND: Psychiatric disorders are multigenic diseases with complex etiology that contribute significantly to human morbidity and mortality. Although clinically distinct, several disorders share many symptoms, suggesting common underlying molecular changes exist that may implicate important regulators of pathogenesis and provide new therapeutic targets. METHODS: We performed RNA sequencing on tissue from the anterior cingulate cortex, dorsolateral prefrontal cortex, and nucleus accumbens from three groups of 24 patients each diagnosed with schizophrenia, bipolar disorder, or major depressive disorder, and from 24 control subjects. We identified differentially expressed genes and validated the results in an independent cohort. Anterior cingulate cortex samples were also subjected to metabolomic analysis. ChIP-seq data were used to characterize binding of the transcription factor EGR1. RESULTS: We compared molecular signatures across the three brain regions and disorders in the transcriptomes of post-mortem human brain samples. The most significant disease-related differences were in the anterior cingulate cortex of schizophrenia samples compared to controls. Transcriptional changes were assessed in an independent cohort, revealing the transcription factor EGR1 as significantly down-regulated in both cohorts and as a potential regulator of broader transcription changes observed in schizophrenia patients. Additionally, broad down-regulation of genes specific to neurons and concordant up-regulation of genes specific to astrocytes was observed in schizophrenia and bipolar disorder patients relative to controls. Metabolomic profiling identified disruption of GABA levels in schizophrenia patients. CONCLUSIONS: We provide a comprehensive post-mortem transcriptome profile of three psychiatric disorders across three brain regions. We highlight a high-confidence set of independently validated genes differentially expressed between schizophrenia and control patients in the anterior cingulate cortex and integrate transcriptional changes with untargeted metabolite profiling.


Assuntos
Transtorno Bipolar/genética , Encéfalo/metabolismo , Transtorno Depressivo Maior/genética , Esquizofrenia/genética , Transcriptoma , Autopsia , Transtorno Bipolar/metabolismo , Imunoprecipitação da Cromatina , Transtorno Depressivo Maior/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Humanos , Masculino , Metabolômica , Esquizofrenia/metabolismo , Análise de Sequência de RNA
12.
J Psychiatr Res ; 82: 58-67, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27468165

RESUMO

MicroRNAs (miRNAs) are small, non-coding RNAs acting as post-transcriptional regulators of gene expression. Though implicated in multiple CNS disorders, miRNAs have not been examined in any psychiatric disease state in anterior cingulate cortex (AnCg), a brain region centrally involved in regulating mood. We performed qPCR analyses of 29 miRNAs previously implicated in psychiatric illness (major depressive disorder (MDD), bipolar disorder (BP) and/or schizophrenia (SZ)) in AnCg of patients with MDD and BP versus controls. miR-132, miR-133a and miR-212 were initially identified as differentially expressed in BP, miR-184 in MDD and miR-34a in both MDD and BP (although none survived multiple correction testing and must be considered preliminary). In silico target prediction algorithms identified putative targets of differentially expressed miRNAs. Nuclear Co-Activator 1 (NCOA1), Nuclear Co-Repressor 2 (NCOR2) and Phosphodiesterase 4B (PDE4B) were selected based upon predicted targeting by miR-34a (with NCOR2 and PDE4B both targeted by miR-184) and published relevance to psychiatric illness. Luciferase assays identified PDE4B as a target of miR-34a and miR-184, while NCOA1 and NCOR2 were targeted by miR-34a and 184, respectively. qPCR analyses were performed to determine whether changes in miRNA levels correlated with mRNA levels of validated targets. NCOA1 showed an inverse correlation with miR-34a in BP, while NCOR2 demonstrated a positive correlation. In sum, this is the first study to demonstrate miRNA changes in AnCg in psychiatric illness and validate miR-34a as differentially expressed in CNS in MDD. These findings support a mechanistic role for miRNAs in the regulation of stress-responsive genes disrupted in psychiatric illness.


Assuntos
Transtorno Bipolar/patologia , Transtorno Depressivo Maior/patologia , Giro do Cíngulo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Adulto , Idoso , Algoritmos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Mutagênese , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo , Coativador 2 de Receptor Nuclear/genética , Coativador 2 de Receptor Nuclear/metabolismo , Mudanças Depois da Morte , RNA Mensageiro/metabolismo , Sirtuína 1/genética , Transfecção , Adulto Jovem
13.
Microarrays (Basel) ; 5(1)2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26998349

RESUMO

Genome-wide association studies of schizophrenia encompassing the major histocompatibility locus (MHC) were highly significant following genome-wide correction. This broad region implicates many genes including the MHC complex class II. Within this interval we examined the expression of two MHC II genes (HLA-DPA1 and HLA-DRB1) in brain from individual subjects with schizophrenia (SZ), bipolar disorder (BD), major depressive disorder (MDD), and controls by differential gene expression methods. A third MHC II mRNA, CD74, was studied outside of the MHC II locus, as it interacts within the same immune complex. Exon microarrays were performed in anterior cingulate cortex (ACC) in BD compared to controls, and both HLA-DPA1 and CD74 were decreased in expression in BD. The expression of HLA-DPA1 and CD74 were both reduced in hippocampus, amygdala, and dorsolateral prefrontal cortex regions in SZ and BD compared to controls by specific qPCR assay. We found several novel HLA-DPA1 mRNA variants spanning HLA-DPA1 exons 2-3-4 as suggested by exon microarrays. The intronic rs9277341 SNP was a significant cis expression quantitative trait locus (eQTL) that was associated with the total expression of HLA-DPA1 in five brain regions. A biomarker study of MHC II mRNAs was conducted in SZ, BD, MDD, and control lymphoblastic cell lines (LCL) by qPCR assay of 87 subjects. There was significantly decreased expression of HLA-DPA1 and CD74 in BD, and trends for reductions in SZ in LCLs. The discovery of multiple splicing variants in brain for HLA-DPA1 is important as the HLA-DPA1 gene is highly conserved, there are no reported splicing variants, and the functions in brain are unknown. Future work on the function and localization of MHC Class II proteins in brain will help to understand the role of alterations in neuropsychiatric disorders. The HLA-DPA1 eQTL is located within a large linkage disequilibrium block that has an irrefutable association with schizophrenia. Future tests in a larger cohort are needed to determine the significance of this eQTL association with schizophrenia. Our findings support the long-held hypothesis that alterations in immune function are associated with the pathophysiology of psychiatric disorders.

14.
J Psychiatr Res ; 72: 15-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26519765

RESUMO

BACKGROUND: Glial cells are essential in maintaining synaptic function. In glutamatergic synapses astrocytes remove the products of neural activity, (i.e. potassium, glutamate and excess water) from the synaptic cleft and redistribute them across the glial network; these products of neural activity can then be recycled for neuronal use or released into the vascular compartment. This type of highly coupled cell network -or syncytium-maintains the balance of synaptic activity by restoring the basal levels of such molecules in the synaptic cleft. Previous studies have reported alterations of glia related genes in Major Depressive Disorder, including some genes related to syncytial function. METHODS: We used RNA isolated from hippocampal tissues of 13 MDD subjects and 10 healthy controls to broadly examine gene expression using microarrays. Hippocampal RNA samples were isolated by laser capture microdissection from human tissue sections carefully avoiding contamination from neighboring structures. Once RNA quality was validated RNA was labeled and hybridized to microarrays. RESULTS: Analysis of microarray data identified mRNA transcripts involved in glial syncytial function that were downregulated in MDD subjects compared to controls, including potassium and water channels (KCNJ10, AQP4), gap junction proteins (GJA1) and glutamate transporters (SLC1A2, SLC1A3). These gene expression differences were confirmed by qPCR. CONCLUSIONS: The downregulation of these genes related to the syncytial network activity of glial cells is consistent with the hypothesis that synaptic homeostasis is disrupted thereby disrupting hippocampal synaptic function in MDD patients. Such glial gene expression changes could contribute either to the onset or perpetuation of depressive symptoms and hence, represent targets for novel therapeutics.


Assuntos
Astrócitos/metabolismo , Transtorno Depressivo Maior/metabolismo , Hipocampo/metabolismo , Adulto , Idoso , Aquaporina 4/metabolismo , Conexina 43/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório , Expressão Gênica , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Humanos , Microdissecção e Captura a Laser , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , RNA Mensageiro/metabolismo , Adulto Jovem
15.
Proc Natl Acad Sci U S A ; 112(38): 11953-8, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26351673

RESUMO

Both gene expression profiling in postmortem human brain and studies using animal models have implicated the fibroblast growth factor (FGF) family in affect regulation and suggest a potential role in the pathophysiology of major depressive disorder (MDD). FGF2, the most widely characterized family member, is down-regulated in the depressed brain and plays a protective role in rodent models of affective disorders. By contrast, using three microarray analyses followed by quantitative RT-PCR confirmation, we show that FGF9 expression is up-regulated in the hippocampus of individuals with MDD, and that FGF9 expression is inversely related to the expression of FGF2. Because little is known about FGF9's function in emotion regulation, we used animal models to shed light on its potential role in affective function. We found that chronic social defeat stress, an animal model recapitulating some aspects of MDD, leads to a significant increase in hippocampal FGF9 expression, paralleling the elevations seen in postmortem human brain tissue. Chronic intracerebroventricular administration of FGF9 increased both anxiety- and depression-like behaviors. In contrast, knocking down FGF9 expression in the dentate gyrus of the hippocampus using a lentiviral vector produced a decrease in FGF9 expression and ameliorated anxiety-like behavior. Collectively, these results suggest that high levels of hippocampal FGF9 play an important role in the development or expression of mood and anxiety disorders. We propose that the relative levels of FGF9 in relation to other members of the FGF family may prove key to understanding vulnerability or resilience in affective disorders.


Assuntos
Afeto , Fator 9 de Crescimento de Fibroblastos/metabolismo , Adulto , Afeto/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Animais , Ansiedade/complicações , Ansiedade/metabolismo , Aprendizagem da Esquiva/efeitos dos fármacos , Estudos de Casos e Controles , Demografia , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Transtorno Depressivo Maior/complicações , Transtorno Depressivo Maior/metabolismo , Feminino , Fator 9 de Crescimento de Fibroblastos/administração & dosagem , Fator 9 de Crescimento de Fibroblastos/genética , Fator 9 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Lentivirus/metabolismo , Masculino , Microinjeções , Pessoa de Meia-Idade , Mudanças Depois da Morte , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/genética , Adulto Jovem
17.
Ann N Y Acad Sci ; 1345: 1-15, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26014447

RESUMO

Depression presents a wide canvas for considering some approaches, issues, and problems in the study of major categories of mental illness in the context of current behavioral and molecular neurobiology. The study of depression encompasses multiple interactions among psychiatry, neurology, and neuroscience, as well as interactions with a host of other disciplines. This paper considers issues from an American perspective and discusses topics including historical aspects of the ways humanity has struggled with depression; the growth of approaches, and the "wars" in psychiatry in the middle of the 20th century between different ideologies; the development of psychiatry as a behavioral science inclusive of many disciplines; current diagnostic systems such as the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) of the American Psychiatric Association, and the ICD-10 Classification of Mental and Behavioral Disorders of the World Health Organization; the efforts to delineate subtypes of depression; the search for new neurobiological and behavioral targets in the context of the National Institute of Mental Health's Research Domain Criteria framework; and examples of potential future discoveries and disciplines that may ultimately improve treatment.


Assuntos
Depressão , Depressão/classificação , Depressão/diagnóstico , Depressão/história , Depressão/terapia , Manual Diagnóstico e Estatístico de Transtornos Mentais , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Neurociências/história , Neurociências/tendências , Psiquiatria/história , Psiquiatria/tendências , Estados Unidos
18.
PLoS One ; 10(5): e0127280, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26011537

RESUMO

A considerable body of evidence supports the role of mitochondrial dysfunction in psychiatric disorders and mitochondrial DNA (mtDNA) mutations are known to alter brain energy metabolism, neurotransmission, and cause neurodegenerative disorders. Genetic studies focusing on common nuclear genome variants associated with these disorders have produced genome wide significant results but those studies have not directly studied mtDNA variants. The purpose of this study is to investigate, using next generation sequencing, the involvement of mtDNA variation in bipolar disorder, schizophrenia, major depressive disorder, and methamphetamine use. MtDNA extracted from multiple brain regions and blood were sequenced (121 mtDNA samples with an average of 8,800x coverage) and compared to an electronic database containing 26,850 mtDNA genomes. We confirmed novel and rare variants, and confirmed next generation sequencing error hotspots by traditional sequencing and genotyping methods. We observed a significant increase of non-synonymous mutations found in individuals with schizophrenia. Novel and rare non-synonymous mutations were found in psychiatric cases in mtDNA genes: ND6, ATP6, CYTB, and ND2. We also observed mtDNA heteroplasmy in brain at a locus previously associated with schizophrenia (T16519C). Large differences in heteroplasmy levels across brain regions within subjects suggest that somatic mutations accumulate differentially in brain regions. Finally, multiplasmy, a heteroplasmic measure of repeat length, was observed in brain from selective cases at a higher frequency than controls. These results offer support for increased rates of mtDNA substitutions in schizophrenia shown in our prior results. The variable levels of heteroplasmic/multiplasmic somatic mutations that occur in brain may be indicators of genetic instability in mtDNA.


Assuntos
DNA Mitocondrial/genética , Transtornos Mentais/genética , Mutação/genética , Adulto , Estudos de Casos e Controles , Análise Mutacional de DNA , Eletroforese em Gel de Ágar , Feminino , Loci Gênicos , Humanos , Masculino , Transtornos Mentais/sangue , Pessoa de Meia-Idade , Dados de Sequência Molecular , Córtex Pré-Frontal/patologia
19.
Front Hum Neurosci ; 8: 238, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24795602

RESUMO

Given the emergent interest in biomarkers for mood disorders, we assessed gene expression in the choroid plexus (CP), the region that produces cerebrospinal fluid (CSF), in individuals with major depressive disorder (MDD). Genes that are expressed in the CP can be secreted into the CSF and may be potential biomarker candidates. Given that we have previously shown that fibroblast growth factor family members are differentially expressed in post-mortem brain of subjects with MDD and the CP is a known source of growth factors in the brain, we posed the question whether growth factor dysregulation would be found in the CP of subjects with MDD. We performed laser capture microscopy of the CP at the level of the hippocampus in subjects with MDD and psychiatrically normal controls. We then extracted, amplified, labeled, and hybridized the cRNA to Illumina BeadChips to assess gene expression. In controls, the most highly abundant known transcript was transthyretin. Moreover, half of the 14 most highly expressed transcripts in controls encode ribosomal proteins. Using BeadStudio software, we identified 169 transcripts differentially expressed (p < 0.05) between control and MDD samples. Using pathway analysis we noted that the top network altered in subjects with MDD included multiple members of the transforming growth factor-beta (TGFß) pathway. Quantitative real-time PCR (qRT-PCR) confirmed downregulation of several transcripts that interact with the extracellular matrix in subjects with MDD. These results suggest that there may be an altered cytoskeleton in the CP in MDD subjects that may lead to a disrupted blood-CSF-brain barrier.

20.
Nat Genet ; 45(9): 984-94, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23933821

RESUMO

Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17-29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 ± 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 ± 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 ± 0.06 s.e.), and ADHD and major depressive disorder (0.32 ± 0.07 s.e.), low between schizophrenia and ASD (0.16 ± 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn's disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Transtornos Mentais/genética , Polimorfismo de Nucleotídeo Único , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno Bipolar/genética , Criança , Transtornos Globais do Desenvolvimento Infantil/genética , Doença de Crohn/genética , Transtorno Depressivo Maior/genética , Heterogeneidade Genética , Genoma Humano , Humanos , Padrões de Herança , Esquizofrenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...