Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 112(6): 1214-1225, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35021859

RESUMO

Populations of the fire blight pathogen Erwinia amylovora Ea110 on apple flower stigmas were tracked over the course of apple bloom in field studies conducted between 2016 and 2019. In 18 of 23 experiments, flower stigmas inoculated on the first day of opening were found to harbor large (106 to 107 cells per flower) populations of E. amylovora when assessed 3 to 5 days postinoculation. However, populations inoculated on stigmas of flowers that were already open for 3 days did not reach 106 cells per flower, and populations inoculated on stigmas of flowers that were already open for 5 days never exceeded 104 cells per flower. During this study, ≥10-fold increases in E. amylovora stigma populations in a 24-h time period (termed population surges) were observed on 34.8, 20.0, and 4.0% of possible days on 1-, 3-, and 5-day-open flowers, respectively. Population surges occurred on days with average temperatures as high as 24.5 and as low as 6.1°C. Experiments incorporating more frequent sampling during days and overnight revealed that many population surges occurred between 10:00 p.m. and 2:00 a.m. A Pearson's correlation analysis of weather parameters occurring during surge events indicated that population surges were significantly associated with situations in which overnight temperatures increased or remained constant, in which wind speed decreased, and in which relative humidity increased. This study refines our knowledge of E. amylovora population dynamics and further indicates that E. amylovora is able to infect flowers during exposure to colder field temperatures than previously reported.


Assuntos
Erwinia amylovora , Malus , Flores , Doenças das Plantas , Dinâmica Populacional
2.
Microorganisms ; 8(10)2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036191

RESUMO

The widely conserved Csr/Rsm (carbon storage regulator/repressor of stationary-phase metabolites) post-transcriptional regulatory system controls diverse phenotypes involved in bacterial pathogenicity and virulence. Here we show that Pseudomonas amygdali pv. phaseolicola 1448A contains seven rsm genes, four of which are chromosomal. In RNAseq analyses, only rsmE was thermoregulated, with increased expression at 18 °C, whereas the antagonistic sRNAs rsmX1, rsmX4, rsmX5 and rsmZ showed increased levels at 28 °C. Only double rsmA-rsmE mutants showed significantly altered phenotypes in functional analyses, being impaired for symptom elicitation in bean, including in planta growth, and for induction of the hypersensitive response in tobacco. Double mutants were also non-motile and were compromised for the utilization of different carbon sources. These phenotypes were accompanied by reduced mRNA levels of the type III secretion system regulatory genes hrpL and hrpA, and the flagellin gene, fliC. Biosynthesis of the phytotoxin phaseolotoxin by mutants in rsmA and rsmE was delayed, occurring only in older cultures, indicating that these rsm homologues act as inductors of toxin synthesis. Therefore, genes rsmA and rsmE act redundantly, although with a degree of specialization, to positively regulate diverse phenotypes involved in niche colonization. Additionally, our results suggest the existence of a regulatory molecule different from the Rsm proteins and dependent on the GacS/GacA (global activator of antibiotic and cyanide production) system, which causes the repression of phaseolotoxin biosynthesis at high temperatures.

3.
Mob DNA ; 10: 7, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30728866

RESUMO

BACKGROUND: Pseudomonas syringae is a γ-proteobacterium causing economically relevant diseases in practically all cultivated plants. Most isolates of this pathogen contain native plasmids collectively carrying many pathogenicity and virulence genes. However, P. syringae is generally an opportunistic pathogen primarily inhabiting environmental reservoirs, which could exert a low selective pressure for virulence plasmids. Additionally, these plasmids usually contain a large proportion of repeated sequences, which could compromise plasmid integrity. Therefore, the identification of plasmid stability determinants and mechanisms to preserve virulence genes is essential to understand the evolution of this pathogen and its adaptability to agroecosystems. RESULTS: The three virulence plasmids of P. syringae pv. savastanoi NCPPB 3335 contain from one to seven functional stability determinants, including three highly active toxin-antitoxin systems (TA) in both pPsv48A and pPsv48C. The TA systems reduced loss frequency of pPsv48A by two orders of magnitude, whereas one of the two replicons of pPsv48C likely confers stable inheritance by itself. Notably, inactivation of the TA systems from pPsv48C exposed the plasmid to high-frequency deletions promoted by mobile genetic elements. Thus, recombination between two copies of MITEPsy2 caused the deletion of an 8.3 kb fragment, with a frequency of 3.8 ± 0.3 × 10- 3. Likewise, one-ended transposition of IS801 generated plasmids containing deletions of variable size, with a frequency of 5.5 ± 2.1 × 10- 4, of which 80% had lost virulence gene idi. These deletion derivatives were stably maintained in the population by replication mediated by repJ, which is adjacent to IS801. IS801 also promoted deletions in plasmid pPsv48A, either by recombination or one-ended transposition. In all cases, functional TA systems contributed significantly to reduce the occurrence of plasmid deletions in vivo. CONCLUSIONS: Virulence plasmids from P. syringae harbour a diverse array of stability determinants with a variable contribution to plasmid persistence. Importantly, we showed that multiple plasmid-borne TA systems have a prominent role in preserving plasmid integrity and ensuring the maintenance of virulence genes in free-living conditions. This strategy is likely widespread amongst native plasmids of P. syringae and other bacteria.

4.
Sci Rep ; 7: 46254, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393892

RESUMO

Integrases are a family of tyrosine recombinases that are highly abundant in bacterial genomes, actively disseminating adaptive characters such as pathogenicity determinants and antibiotics resistance. Using comparative genomics and functional assays, we identified a novel type of mobile genetic element, the GInt, in many diverse bacterial groups but not in archaea. Integrated as genomic islands, GInts show a tripartite structure consisting of the ginABCD operon, a cargo DNA region from 2.5 to at least 70 kb, and a short AT-rich 3' end. The gin operon is characteristic of GInts and codes for three putative integrases and a small putative helix-loop-helix protein, all of which are essential for integration and excision of the element. Genes in the cargo DNA are acquired mostly from phylogenetically related bacteria and often code for traits that might increase fitness, such as resistance to antimicrobials or virulence. GInts also tend to capture clusters of genes involved in complex processes, such as the biosynthesis of phaseolotoxin by Pseudomonas syringae. GInts integrate site-specifically, generating two flanking direct imperfect repeats, and excise forming circular molecules. The excision process generates sequence variants at the element attachment site, which can increase frequency of integration and drive target specificity.


Assuntos
Bactérias/genética , Genes Bacterianos , Genes Essenciais , Ilhas Genômicas/genética , Recombinação Genética , Sequência de Bases , DNA Bacteriano/genética , DNA Circular/genética , Óperon/genética , Especificidade da Espécie
5.
Front Microbiol ; 8: 190, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28243228

RESUMO

Plasmids are a main factor for the evolution of bacteria through horizontal gene exchange, including the dissemination of pathogenicity genes, resistance to antibiotics and degradation of pollutants. Their capacity to duplicate is dependent on their replication determinants (replicon), which also define their bacterial host range and the inability to coexist with related replicons. We characterize a second replicon from the virulence plasmid pPsv48C, from Pseudomonas syringae pv. savastanoi, which appears to be a natural chimera between the gene encoding a newly described replication protein and a putative replication control region present in the widespread family of PFP virulence plasmids. We present extensive evidence of this type of chimerism in structurally similar replicons from species of Pseudomonas, including environmental bacteria as well as plant, animal and human pathogens. We establish that these replicons consist of two functional modules corresponding to putative control (REx-C module) and replication (REx-R module) regions. These modules are functionally separable, do not show specificity for each other, and are dynamically exchanged among replicons of four distinct plasmid families. Only the REx-C module displays strong incompatibility, which is overcome by a few nucleotide changes clustered in a stem-and-loop structure of a putative antisense RNA. Additionally, a REx-C module from pPsv48C conferred replication ability to a non-replicative chromosomal DNA region containing features associated to replicons. Thus, the organization of plasmid replicons as independent and exchangeable functional modules is likely facilitating rapid replicon evolution, fostering their diversification and survival, besides allowing the potential co-option of appropriate genes into novel replicons and the artificial construction of new replicon specificities.

6.
Appl Environ Microbiol ; 79(3): 756-67, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23144138

RESUMO

Mangotoxin production was first described in Pseudomonas syringae pv. syringae strains. A phenotypic characterization of 94 P. syringae strains was carried out to determine the genetic evolution of the mangotoxin biosynthetic operon (mbo). We designed a PCR primer pair specific for the mbo operon to examine its distribution within the P. syringae complex. These primers amplified a 692-bp DNA fragment from 52 mangotoxin-producing strains and from 7 non-mangotoxin-producing strains that harbor the mbo operon, whereas 35 non-mangotoxin-producing strains did not yield any amplification. This, together with the analysis of draft genomes, allowed the identification of the mbo operon in five pathovars (pathovars aptata, avellanae, japonica, pisi, and syringae), all of which belong to genomospecies 1, suggesting a limited distribution of the mbo genes in the P. syringae complex. Phylogenetic analyses using partial sequences from housekeeping genes differentiated three groups within genomospecies 1. All of the strains containing the mbo operon clustered in groups I and II, whereas those lacking the operon clustered in group III; however, the relative branching order of these three groups is dependent on the genes used to construct the phylogeny. The mbo operon maintains synteny and is inserted in the same genomic location, with high sequence conservation around the insertion point, for all the strains in groups I and II. These data support the idea that the mbo operon was acquired horizontally and only once by the ancestor of groups I and II from genomospecies 1 within the P. syringae complex.


Assuntos
Toxinas Bacterianas/genética , Vias Biossintéticas , Evolução Molecular , Óperon , Pseudomonas syringae/genética , Análise por Conglomerados , Primers do DNA/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Transferência Genética Horizontal , Genótipo , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Pseudomonas syringae/classificação , Análise de Sequência de DNA
7.
Mol Plant Pathol ; 13(9): 998-1009, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22805238

RESUMO

Pseudomonas savastanoi pv. savastanoi is the causal agent of olive (Olea europaea) knot disease and an unorthodox member of the P. syringae complex, causing aerial tumours instead of the foliar necroses and cankers characteristic of most members of this complex. Olive knot is present wherever olive is grown; although losses are difficult to assess, it is assumed that olive knot is one of the most important diseases of the olive crop. The last century witnessed a large number of scientific articles describing the biology, epidemiology and control of this pathogen. However, most P. savastanoi pv. savastanoi strains are highly recalcitrant to genetic manipulation, which has effectively prevented the pathogen from benefitting from the scientific progress in molecular biology that has elevated the foliar pathogens of the P. syringae complex to supermodels. A number of studies in recent years have made significant advances in the biology, ecology and genetics of P. savastanoi pv. savastanoi, paving the way for the molecular dissection of its interaction with other nonpathogenic bacteria and their woody hosts. The selection of a genetically pliable model strain was soon followed by the development of rapid methods for virulence assessment with micropropagated olive plants and the analysis of cellular interactions with the plant host. The generation of a draft genome of strain NCPPB 3335 and the closed sequence of its three native plasmids has allowed for functional and comparative genomic analyses for the identification of its pathogenicity gene complement. This includes 34 putative type III effector genes and genomic regions, shared with other pathogens of woody hosts, which encode metabolic pathways associated with the degradation of lignin-derived compounds. Now, the time is right to explore the molecular basis of the P. savastanoi pv. savastanoi-olive interaction and to obtain insights into why some pathovars like it necrotic and why some like it knot. SYNONYMS: Pseudomonas syringae pv. savastanoi. TAXONOMY: Kingdom Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Family Pseudomonadaceae; Genus Pseudomonas; included in genomospecies 2 together with at least P. amygdali, P. ficuserectae, P. meliae and 16 other pathovars from the P. syringae complex (aesculi, ciccaronei, dendropanacis, eriobotryae, glycinea, hibisci, mellea, mori, myricae, phaseolicola, photiniae, sesami, tabaci, ulmi and certain strains of lachrymans and morsprunorum); when a formal proposal is made for the unification of these bacteria, the species name P. amygdali would take priority over P. savastanoi. MICROBIOLOGICAL PROPERTIES: Gram-negative rods, 0.4-0.8 × 1.0-3.0 µm, aerobic. Motile by one to four polar flagella, rather slow growing, optimal temperatures for growth of 25-30 °C; oxidase negative, arginine dihydrolase negative; elicits the hypersensitive response on tobacco; most isolates are fluorescent and levan negative, although some isolates are nonfluorescent and levan positive. HOST RANGE: P. savastanoi pv. savastanoi causes tumours in cultivated and wild olive and ash (Fraxinus excelsior). Although strains from olive have been reported to infect oleander (Nerium oleander), this is generally not the case; however, strains of P. savastanoi pv. nerii can infect olive. Pathovars fraxini and nerii are differentiated from pathovar savastanoi mostly in their host range, and were not formally recognized until 1996. Literature before about 1996 generally names strains of the three pathovars as P. syringae ssp. savastanoi or P. savastanoi ssp. savastanoi, contributing to confusion on the host range and biological properties. DISEASE SYMPTOMS: Symptoms of infected trees include hyperplastic growths (tumorous galls or knots) on the stems and branches of the host plant and, occasionally, on leaves and fruits. EPIDEMIOLOGY: The pathogen can survive and multiply on aerial plant surfaces, as well as in knots, from where it can be dispersed by rain, wind, insects and human activities, entering the plant through wounds. Populations are very unevenly distributed in the plant, and suffer drastic fluctuations throughout the year, with maximum numbers of bacteria occurring during rainy and warm months. Populations of P. savastanoi pv. savastanoi are normally associated with nonpathogenic bacteria, both epiphytically and endophytically, and have been demonstrated to form mutualistic consortia with Erwinia toletana and Pantoea agglomerans, which could result in increased bacterial populations and disease symptoms. DISEASE CONTROL: Based on preventive measures, mostly sanitary and cultural practices. Integrated control programmes benefit from regular applications of copper formulations, which should be maintained for at least a few years for maximum benefit. Olive cultivars vary in their susceptibility to olive knot, but there are no known cultivars with full resistance to the pathogen. USEFUL WEBSITES: http://www.pseudomonas-syringae.org/; http://genome.ppws.vt.edu/cgi-bin/MLST/home.pl; ASAP access to the P. savastanoi pv. savastanoi NCPPB 3335 genome sequence https://asap.ahabs.wisc.edu/asap/logon.php.


Assuntos
Doenças das Plantas/microbiologia , Pseudomonas/fisiologia , Adaptação Fisiológica , Genoma Bacteriano/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Olea/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/estatística & dados numéricos , Pseudomonas/classificação , Pseudomonas/genética , Pseudomonas/patogenicidade
8.
PLoS One ; 6(10): e25705, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22022435

RESUMO

Pseudomonas savastanoi pv. savastanoi NCPPB 3335 is a model for the study of the molecular basis of disease production and tumor formation in woody hosts, and its draft genome sequence has been recently obtained. Here we closed the sequence of the plasmid complement of this strain, composed of three circular molecules of 78,357 nt (pPsv48A), 45,220 nt (pPsv48B), and 42,103 nt (pPsv48C), all belonging to the pPT23A-like family of plasmids widely distributed in the P. syringae complex. A total of 152 coding sequences were predicted in the plasmid complement, of which 38 are hypothetical proteins and seven correspond to putative virulence genes. Plasmid pPsv48A contains an incomplete Type IVB secretion system, the type III secretion system (T3SS) effector gene hopAF1, gene ptz, involved in cytokinin biosynthesis, and three copies of a gene highly conserved in plant-associated proteobacteria, which is preceded by a hrp box motif. A complete Type IVA secretion system, a well conserved origin of transfer (oriT), and a homolog of the T3SS effector gene hopAO1 are present in pPsv48B, while pPsv48C contains a gene with significant homology to isopentenyl-diphosphate delta-isomerase, type 1. Several potential mobile elements were found on the three plasmids, including three types of MITE, a derivative of IS801, and a new transposon effector, ISPsy30. Although the replication regions of these three plasmids are phylogenetically closely related, their structure is diverse, suggesting that the plasmid architecture results from an active exchange of sequences. Artificial inoculations of olive plants with mutants cured of plasmids pPsv48A and pPsv48B showed that pPsv48A is necessary for full virulence and for the development of mature xylem vessels within the knots; we were unable to obtain mutants cured of pPsv48C, which contains five putative toxin-antitoxin genes.


Assuntos
Plasmídeos Indutores de Tumores em Plantas/genética , Pseudomonas/genética , Pseudomonas/patogenicidade , Análise de Sequência de DNA , Sequência de Bases , Dados de Sequência Molecular , Olea/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Virulência/genética
9.
PLoS One ; 6(10): e25773, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22016774

RESUMO

Mobile genetic elements are widespread in Pseudomonas syringae, and often associate with virulence genes. Genome reannotation of the model bean pathogen P. syringae pv. phaseolicola 1448A identified seventeen types of insertion sequences and two miniature inverted-repeat transposable elements (MITEs) with a biased distribution, representing 2.8% of the chromosome, 25.8% of the 132-kb virulence plasmid and 2.7% of the 52-kb plasmid. Employing an entrapment vector containing sacB, we estimated that transposition frequency oscillated between 2.6×10(-5) and 1.1×10(-6), depending on the clone, although it was stable for each clone after consecutive transfers in culture media. Transposition frequency was similar for bacteria grown in rich or minimal media, and from cells recovered from compatible and incompatible plant hosts, indicating that growth conditions do not influence transposition in strain 1448A. Most of the entrapped insertions contained a full-length IS801 element, with the remaining insertions corresponding to sequences smaller than any transposable element identified in strain 1448A, and collectively identified as miniature sequences. From these, fragments of 229, 360 and 679-nt of the right end of IS801 ended in a consensus tetranucleotide and likely resulted from one-ended transposition of IS801. An average 0.7% of the insertions analyzed consisted of IS801 carrying a fragment of variable size from gene PSPPH_0008/PSPPH_0017, showing that IS801 can mobilize DNA in vivo. Retrospective analysis of complete plasmids and genomes of P. syringae suggests, however, that most fragments of IS801 are likely the result of reorganizations rather than one-ended transpositions, and that this element might preferentially contribute to genome flexibility by generating homologous regions of recombination. A further miniature sequence previously found to affect host range specificity and virulence, designated MITEPsy1 (100-nt), represented an average 2.4% of the total number of insertions entrapped in sacB, demonstrating for the first time the mobilization of a MITE in bacteria.


Assuntos
Elementos de DNA Transponíveis/genética , Sequências Repetidas Invertidas/genética , Plantas/microbiologia , Pseudomonas syringae/genética , Pseudomonas syringae/fisiologia , Sequência de Bases , Vetores Genéticos/genética , Genoma Bacteriano/genética , Anotação de Sequência Molecular , Pseudomonas syringae/crescimento & desenvolvimento
10.
Res Microbiol ; 162(3): 253-61, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21187143

RESUMO

Certain strains of Pseudomonas syringae pathovars phaseolicola and actinidiae and P. syringae pv. syringae strain CFBP3388 produce the chlorosis-inducing phytotoxin phaseolotoxin, which inhibits biosynthesis of arginine and polyamines. The 25 kb Pht cluster, responsible for phaseolotoxin biosynthesis, is included in a putative pathogenicity island that is nearly identical in selected strains of the pathovars phaseolicola and actinidiae, suggesting that it has been recently acquired by horizontal transfer. The history of pathogenicity islands is pivotal for our understanding of the evolution of virulence in plant pathogenic bacteria; nevertheless, our knowledge of the origins, biology and genetics of this island is currently rather limited. The aim of this work was to explore the conservation of phaseolotoxin biosynthesis genes in a broader collection of isolates and in strain CFBP3388, in order to better understand its evolution and gene dynamics. PCR, hybridization and sequence analysis showed that the island is highly conserved among a diversity of strains of pathovars phaseolicola and actinidiae, suggesting that it was acquired only once by each pathovar. Strain CFBP3388 contained DNA homologous to the Pht cluster, and an insertional mutant in the regulatory gene phtL did not synthesize the toxin. A 6.5 kb fragment from strain CFBP3388 was syntenic to the Pht cluster, but showed nucleotide identity of only 85.3%. This contrasts with an identity higher than 99.8% among clusters of pathovars phaseolicola and actinidiae, in spite of the fact that pv. syringae is phylogenetically closer to pv. phaseolicola. In addition, strain CFBP3388 lacked the four integrases that are putatively responsible for the mobility of the pathogenicity island. These results indicate that genes for the biosynthesis of phaseolotoxin have a complex evolutionary history and were acquired by pathovars of P. syringae at least twice during evolution.


Assuntos
Vias Biossintéticas/genética , Sequência Conservada , Transferência Genética Horizontal , Família Multigênica , Ornitina/análogos & derivados , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Análise por Conglomerados , DNA Bacteriano/genética , Evolução Molecular , Ilhas Genômicas , Hibridização de Ácido Nucleico , Ornitina/biossíntese , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
11.
Environ Microbiol ; 12(6): 1604-20, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20370821

RESUMO

Pseudomonas savastanoi pv. savastanoi is a tumour-inducing pathogen of Olea europaea L. causing olive knot disease. Bioinformatic analysis of the draft genome sequence of strain NCPPB 3335, which encodes 5232 predicted coding genes on a total length of 5856 998 bp and a 57.12% G + C, revealed a large degree of conservation with Pseudomonas syringae pv. phaseolicola 1448A and P. syringae pv. tabaci 11528. However, NCPPB 3335 contains twelve variable genomic regions, which are absent in all previously sequenced P. syringae strains. Various features that could contribute to the ability of this strain to survive in a woody host were identified, including broad catabolic and transport capabilities for degrading plant-derived aromatic compounds, the duplication of sequences related to the biosynthesis of the phytohormone indoleacetic acid (iaaM, iaaH) and its amino acid conjugate indoleacetic acid-lysine (iaaL gene), and the repertoire of strain-specific putative type III secretion system effectors. Access to this seventh genome sequence belonging to the 'P. syringae complex' allowed us to identify 73 predicted coding genes that are NCPPB 3335-specific. Results shown here provide the basis for detailed functional analysis of a tumour-inducing pathogen of woody hosts and for the study of specific adaptations of a P. savastanoi pathovar.


Assuntos
Genoma Bacteriano , Tumores de Planta/microbiologia , Pseudomonas/genética , Pseudomonas/patogenicidade , Virulência/genética , Ácidos Indolacéticos/metabolismo , Sequências Repetitivas Dispersas , Dados de Sequência Molecular , Olea/microbiologia , Filogenia , Pseudomonas/classificação , Pseudomonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...