Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Saudi Pharm J ; 32(7): 102099, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38817822

RESUMO

Colorectal cancer is one of the major causes of global cancer, with chemotherapy and radiation therapy being effective but limited due to low specificity. Regorafenib, a multikinase inhibitor, provides hope to patients with metastatic colorectal cancer and was approved by the FDA in 2012. However, due to resistance issues and adverse events, its efficacy is compromised, necessitating further refinement. Meanwhile, curcumin, a compound of turmeric, exhibits anticancer effects through antioxidant and anti-inflammatory actions, induction of the apoptosis, arrest of cell cycle, inhibition of angiogenesis, and modulation of signaling pathways. Unfortunately, its clinical utility is limited by its poor bioavailability, pointing towards innovative drug delivery strategies for enhanced efficacy in colorectal cancer treatment. Hyaluronic acid (HA)-decorated liposomes (LIPO) have been developed to target colorectal cells through an overexpressed CD44 receptor, increasing antitumor and antimetastasis efficacy. This study investigates the possibility of loading curcumin (CUR) or regorafenib (REGO) into a liposomal formulation for passive and HA-actively targeted treatment, evaluating its critical quality attributes (CQA) (size, zeta potential, polydispersity index) and cytotoxic activity in the HT29 colorectal cancer cell line. The average particle size of the plain liposomes and those decorated with HA was 144.00 ± 0.78 nm and 140.77 ± 1.64 nm, respectively. In contrast, curcumin-loaded plain liposomes and HA-decorated liposomes had 140 ± 2.46 nm and 164.53 ± 15.13 nm, respectively. The prepared liposomes had a spherical shape with a narrow size distribution and an acceptable zeta potential of less than -30 mV. The encapsulation efficiency was 99.2 % ± 0.3 and 99.9 ± 0.2 % for HA-decorated and bare regorafenib loaded. The % EE was 98.9 ± 0.2 % and 97.5 ± 0.2 % for bare liposomal nanoparticles loaded with curcumin and coated with curcumin. The IC50 of free REGO, CUR, REGO-LIPO, CUR-LIPO, REGO-LIPO-HA and CUR-LIPO-HA were 20.17 ± 0.78, 64.4 ± 0.33, 224.8 ± 0.06, 49.66 ± 0.22, 73.66 ± 0.6, and 27.86 ± 0.49 µM, respectively. The MTT assay in HT29 cells showed significant cytotoxic activity of the HA-decorated liposomal formulation compared to the base uncoated formulation, indicating that hyaluronic acid-targeted liposomes loaded with regorafenib or curcumin could be a promising targeted formulation against colorectal cancer cells.

2.
Expert Opin Ther Pat ; 34(3): 141-158, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557273

RESUMO

INTRODUCTION: Recent years have witnessed great achievements in drug design and development targeting the phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT) signaling pathway, a pathway central to cell growth and proliferation. The nearest neighbor protein-protein interaction networks for PI3K and AKT show the interplays between these target proteins which can be harnessed for drug discovery. In this review, we discuss the drug design and clinical development of inhibitors of PI3K/AKT in the past three years. We review in detail the structures, selectivity, efficacy, and combination therapy of 35 inhibitors targeting these proteins, classified based on the target proteins. Approaches to overcoming drug resistance and to minimizing toxicities are discussed. Future research directions for developing combinational therapy and PROTACs of PI3K and AKT inhibitors are also discussed. AREA COVERED: This review covers clinical trial reports and patent literature on inhibitors of PI3K and AKT published between 2020 and 2023. EXPERT OPINION: To address drug resistance and drug toxicity of inhibitors of PI3K and AKT, it is highly desirable to design and develop subtype-selective PI3K inhibitors or subtype-selective AKT1 inhibitors to minimize toxicity or to develop allosteric drugs that can form covalent bonds. The development of PROTACs of PI3Kα or AKT helps to reduce off-target toxicities.


Assuntos
Antineoplásicos , Desenho de Fármacos , Desenvolvimento de Medicamentos , Neoplasias , Patentes como Assunto , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Animais , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células/efeitos dos fármacos , Terapia de Alvo Molecular
3.
Expert Opin Ther Pat ; 34(1-2): 51-69, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450537

RESUMO

INTRODUCTION: Recent years have seen significant strides in drug developmenttargeting the EGFR/RAS/RAF signaling pathway which is critical forcell growth and proliferation. Protein-protein interaction networksamong EGFR, RAS, and RAF proteins offer insights for drug discovery. This review discusses the drug design and development efforts ofinhibitors targeting these proteins over the past 3 years, detailingtheir structures, selectivity, efficacy, and combination therapy.Strategies to combat drug resistance and minimize toxicities areexplored, along with future research directions. AREA COVERED: This review encompasses clinical trials and patents on EGFR, KRAS,and BRAF inhibitors from 2020 to 2023, including advancements indesign and synthesis of proteolysis targeting chimeras (PROTACs) forprotein degradation. EXPERT OPINION: To tackle drug resistance, designing allosteric fourth-generationEGFR inhibitors is vital. Covalent, allosteric, or combinationaltherapies, along with PROTAC degraders, are key methods to addressresistance and toxicity in KRAS and BRAF inhibitors.


Assuntos
Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Patentes como Assunto , Transdução de Sinais , Receptores ErbB , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
4.
Z Naturforsch C J Biosci ; 79(1-2): 41-46, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38414412

RESUMO

A set of cyclopenten-[g]annelated isoindigos (5a-g) has been prepared and tested for their in vitro antiproliferative activities against MCF-7 and HL60 cells. Among, the N-1-methyl-5'-nitro derivative (5g) displayed the highest activity against HL60 cells (IC50 = 67 nM) and acted as the most potent Flt3 inhibitor. Compounds 5d-g exhibited moderate activity against MCF-7 (IC50 = 50-80 µM).


Assuntos
Antineoplásicos , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Ciclopentanos/farmacologia , Indóis/farmacologia , Relação Estrutura-Atividade , Proliferação de Células , Estrutura Molecular , Linhagem Celular Tumoral
5.
Biomed Res Int ; 2023: 2592691, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841082

RESUMO

The catalytic activity of monoamine oxidase A (MAO-A) has been linked to tumorigenesis due to the production of reactive oxygen species (ROS) and the resulting oxidative stress. MAO-A inhibition revealed a beneficial role in prostate and lung cancer treatment. This study is aimed at evaluating the effect of different monoamine oxidase A inhibitors (MAO-AIs) on the proliferation and progression of breast cancer cell lines. The cell viability assay was used to evaluate the antiproliferative and combined effects of MAO-AIs. Cell migration was evaluated using wound healing, invasion, and colony formation assays. The underlying mechanism of cell death was studied using flow cytometry. The real-time polymerase chain reaction was used to determine the relative gene expression. Finally, MAO-A activity in breast cancer cells was evaluated using an MAO-A activity assay. According to the results, the examined MAO-AIs significantly inhibited the proliferation of breast cancer cells in a dose-dependent manner. In breast cancer cells, the combination of anticancer drugs (doxorubicin or raloxifene) with MAO-AIs resulted in a synergistic effect. MAO-AIs significantly reduced wound closure and invasion ability in breast cancer cells. Also, MAO-AIs reduced the colony count and size of breast cancer cells. MAO-AIs resulted in significant proapoptotic activity in breast cancer cells. Finally, the MAO-AIs suppressed MAO-A, Bcl-2, and VEGF gene expressions in breast cancer cells relative to untreated cells. This study provides solid evidence supporting the anticancer effect of MAO-A inhibitors in breast cancer cells.


Assuntos
Neoplasias da Mama , Inibidores da Monoaminoxidase , Masculino , Humanos , Inibidores da Monoaminoxidase/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
6.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569509

RESUMO

Matrix metalloproteinases (MMPs) belong to a family of zinc-dependent proteolytic metalloenzymes. MMP-9, a member of the gelatinase B family, is characterized as one of the most intricate MMPs. The crucial involvement of MMP-9 in extracellular matrix (ECM) remodeling underscores its significant correlation with each stage of cancer pathogenesis and progression. The design and synthesis of MMP-9 inhibitors is a potentially attractive research area. Unfortunately, to date, there is no effective MMP-9 inhibitor that passes the clinical trials and is approved by the FDA. This review primarily focuses on exploring the diverse strategies employed in the design and advancement of MMP-9 inhibitors, along with their anticancer effects and selectivity. To illuminate the essential structural characteristics necessary for the future design of novel MMP-9 inhibitors, the current narrative review highlights several recently discovered MMP-9 inhibitors exhibiting notable selectivity and potency.


Assuntos
Metaloproteinase 9 da Matriz , Neoplasias , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Inibidores de Metaloproteinases de Matriz/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Metaloproteinases da Matriz/química , Proteólise , Matriz Extracelular/metabolismo
7.
Molecules ; 28(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37513440

RESUMO

Matrix metalloproteinases (MMPs) are identifiable members of proteolytic enzymes that can degrade a wide range of proteins in the extracellular matrix (ECM). MMPs can be categorized into six groups based on their substrate specificity and structural differences: collagenases, gelatinases, stromelysins, matrilysins, metalloelastase, and membrane-type MMPs. MMPs have been linked to a wide variety of biological processes, such as cell transformation and carcinogenesis. Over time, MMPs have been evaluated for their role in cancer progression, migration, and metastasis. Accordingly, various MMPs have become attractive therapeutic targets for anticancer drug development. The first generations of broad-spectrum MMP inhibitors displayed effective inhibitory activities but failed in clinical trials due to poor selectivity. Thanks to the evolution of X-ray crystallography, NMR analysis, and homology modeling studies, it has been possible to characterize the active sites of various MMPs and, consequently, to develop more selective, second-generation MMP inhibitors. In this review, we summarize the computational and synthesis approaches used in the development of MMP inhibitors and their evaluation as potential anticancer agents.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Neoplasias/metabolismo , Metaloproteinases da Matriz/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Matriz Extracelular/metabolismo
8.
Curr Med Res Opin ; 39(8): 1119-1126, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37501626

RESUMO

OBJECTIVES: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic systemic disease that leads to neurological, immunological, autonomic, and energy metabolism dysfunction. COVID-19 has been reported to cause similar symptoms to ME/CFS. The study aims to investigate the prevalence of myalgic encephalomyelitis in patients post-COVID-19 infection by assessing acute and long-term COVID-19 symptoms. METHODS: A cross-sectional questionnaire was developed based on the ME/CFS diagnostic criteria, as specified by the IOM clinical diagnostic criteria, and administered to participants with confirmed COVID-19 who are more than 18 years old and have BMI below 40 Kg/m2. Data from 437 participants were completed. RESULTS: The current study results revealed that 8.1% of the study participants met the ME/CFS diagnostic criteria. Interestingly, 2.8 of the study participants were classified to have COVID-19 related to ME/CFS. While 4.6% of participants were determined to have disease-related fatigue, 0.7% of participants showed ME/CFS that was not related to COVID-19, and 3.7% of participants were considered to have long COVID-19. Almost one-fourth of the study participants had a family history of ME/CFS. The current study demonstrated that the prevalence of ME/CFS is similar to slightly higher than reported in the literature. CONCLUSION: The presence of a relationship between ME/CFS and COVID-19 has been supported by the results of our study. Follow-up of COVID-19 patients is strongly recommended to ensure proper management of ME/CFS symptoms.


Assuntos
COVID-19 , Síndrome de Fadiga Crônica , Humanos , Adolescente , Síndrome de Fadiga Crônica/epidemiologia , Síndrome de Fadiga Crônica/diagnóstico , Estudos Transversais , Síndrome de COVID-19 Pós-Aguda , COVID-19/complicações , COVID-19/epidemiologia , Doença Crônica
9.
Viruses ; 15(2)2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36851782

RESUMO

Despite the great technological and medical advances in fighting viral diseases, new therapies for most of them are still lacking, and existing antivirals suffer from major limitations regarding drug resistance and a limited spectrum of activity. In fact, most approved antivirals are directly acting antiviral (DAA) drugs, which interfere with viral proteins and confer great selectivity towards their viral targets but suffer from resistance and limited spectrum. Nowadays, host-targeted antivirals (HTAs) are on the rise, in the drug discovery and development pipelines, in academia and in the pharmaceutical industry. These drugs target host proteins involved in the virus life cycle and are considered promising alternatives to DAAs due to their broader spectrum and lower potential for resistance. Herein, we discuss an important class of HTAs that modulate signal transduction pathways by targeting host kinases. Kinases are considered key enzymes that control virus-host interactions. We also provide a synopsis of the antiviral drug discovery and development pipeline detailing antiviral kinase targets, drug types, therapeutic classes for repurposed drugs, and top developing organizations. Furthermore, we detail the drug design and repurposing considerations, as well as the limitations and challenges, for kinase-targeted antivirals, including the choice of the binding sites, physicochemical properties, and drug combinations.


Assuntos
Antivirais , Proteínas Quinases , Humanos , Antivirais/farmacologia , Reposicionamento de Medicamentos , Descoberta de Drogas , Desenho de Fármacos
10.
J Pharm Pharm Sci ; 25: 253-265, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35977549

RESUMO

PURPOSE: To evaluate the effects of SGLT2 inhibitors on the proliferation, tumorigenesis, migration, colony formation, apoptosis, selected gene expression pattern, and combination with known chemotherapeutic drugs in different human cancer cell lines. METHODS: The antiproliferative and combined effects of SGLT2 inhibitors were evaluated by MTT assay. Cell migration was assessed using wound-healing and colony formation assays. Apoptosis assay was conducted using annexin V-FITC/ propidium iodide staining. SGLT2 gene expression was determined using real-time PCR. RESULTS: Canagliflozin, dapagliflozin, and ipragliflozin significantly inhibited the growth of different cancer cell lines in a dose and time-dependent manner. IC50 values after 48 hours of treatment with canagliflozin, ipragliflozin, and dapagliflozin ranged from 41.97 µM to 69.49 µM, 63.67 µM to 255.80 µM, and 167.7 µM to 435.70 µM in the examined cancer cell lines, respectively. The combined treatment of SGLT2 with doxorubicin and raloxifene separately resulted in a synergistic effect in Caco-2 and A-549 cell lines. On the other hand, the combination of SGLT2 inhibitors with cisplatin resulted in an antagonistic effect in A-549, Du-145, and Panc-1 cell lines. Canagliflozin and ipragliflozin inhibited cell migration and colony formation ability at IC50 and Sub-IC50 in the examined cancer cell lines. Canagliflozin and ipragliflozin significantly induced apoptosis at IC50 and Double-IC50 in the Du-145 cell line compared to the control. Real-time PCR showed that the treatment with 0.1 IC50 and 0.2 IC50 of both canagliflozin and ipragliflozin resulted in diminished RNA expression of SGLT2, VEGF, and Bcl-2 genes in the Du-145 cell line. CONCLUSION: SGLT2 inhibitors have antiproliferation, anti-tumorigenesis, and anti-migration effects and may induce apoptosis in cancer cells. In addition, treatment with SGLT2 inhibitors resulted in the downregulation of selected genes in the Du-145 cell line.


Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias , Inibidores do Transportador 2 de Sódio-Glicose , Células CACO-2 , Canagliflozina/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose , Humanos , Hipoglicemiantes/uso terapêutico , Neoplasias/tratamento farmacológico , Sódio/metabolismo , Sódio/uso terapêutico , Transportador 2 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
11.
Molecules ; 27(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35566238

RESUMO

Lung cancer is one of the most common causes of cancer-related deaths worldwide. Monoamine Oxidase-A (MAO-A) enzyme mediates the production of reactive oxygen species (ROS) that trigger DNA damage and oxidative injury of cells resulting in tumor initiation and progression. Available MAO-A inhibitors are used as antidepressants, however, their role as anticancer agents is still under investigation. Ligand- and structure-based drug design approaches guided the discovery and development of novel MAO-A inhibitors. A series of 1H indole-2-carboxamide derivatives was prepared and characterized using 1H-NMR, 13C-NMR, and IR. The antiproliferative effects of MAO-A inhibitors were evaluated using the cell viability assay (MTT), and MAO-A activity was evaluated using MAO-A activity assay. The presumed inhibitors significantly inhibited the growth of lung cell lines in a dose- and time dependent manner. The half maximal inhibitory concentration (IC50) values of MAO-A inhibitors (S1, S2, S4, S7, and S10) were 33.37, 146.1, 208.99, 307.7, and 147.2 µM, respectively, in A549. Glide docking against MAO-A showed that the derivatives accommodate MAO-A binding cleft and engage with key binding residues. MAO-A inhibitors provide significant and consistent evidence on MAO-A activity in lung cancer and present a potential target for the development of new chemotherapeutic agents.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Antidepressivos/farmacologia , Antineoplásicos/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/química , Relação Estrutura-Atividade
12.
Anticancer Agents Med Chem ; 22(9): 1826-1836, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35546505

RESUMO

BACKGROUND: Lung cancer remains the leading cause of cancer-related deaths worldwide. Hence, novel therapeutic approaches targeting crucial pathways are needed to improve its treatment. Previous studies have verified the involvement of the estrogen pathway, mediated through estrogen receptor ß (ERß), in the development and progression of lung carcinogenesis. Selective estrogen receptor modulators (SERMs) are a group of estrogen receptor agonists/antagonists that have tissue selective effects. Many of the available SERMs are used for the management of breast cancer. However, their role in lung cancer is still under investigation. OBJECTIVES: The aim of this research is to investigate the anti-tumorigenic activity of the selective estrogen receptor modulators, tamoxifen, raloxifene, and toremifene, against different lung cancer cell lines. METHODS: The anti-proliferative and combined effects of SERMs with standard chemotherapy were evaluated by MTT assay. Cell migration was assessed using a wound-healing assay. The mechanism of cell death was determined using the Annexin V-FITC/ propidium iodide staining flow cytometry method. Cells' capability to form colonies was evaluated by soft agar colony formation assay. Estrogen receptors expression was determined using real-time PCR. RESULTS: Our results have demonstrated the presence of ERß in A549, H1299, and H661 lung cancer cells. Cellular proliferation assay suggested that SERMs have significantly reduced lung cancer cells proliferation in a time and concentration- dependent manner. Additionally, SERMs exhibited a synergistic effect against A549 cells when combined with cisplatin. SERMs treatment have increased cell apoptosis and resulted in concentration-dependent inhibition of cell migration and colony formation of A549 cells. CONCLUSION: Selective estrogen receptor modulators may possess potential therapeutic utility for the treatment of lung cancer as monotherapy or in combination with standard chemotherapy.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Apoptose , Neoplasias da Mama/tratamento farmacológico , Movimento Celular , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Receptor beta de Estrogênio , Feminino , Humanos , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
13.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35457059

RESUMO

Toxoplasma gondii (T. gondii) is a highly prevalent parasite that has no gold standard treatment due to the poor action or the numerous side effects. Focused sulfonamide-1,2,3-triazole hybrids 3a-c were wisely designed and synthesized via copper catalyzed 1,3-dipolar cycloaddition approach between prop-2-yn-1-alcohol 1 and sulfa drug azides 2a-c. The newly synthesized click products were fully characterized using different spectroscopic experiments and were loaded onto chitosan nanoparticles to form novel nanoformulations for further anti-Toxoplasma investigation. The current study proved the anti-Toxoplasma effectiveness of all examined compounds in experimentally infected mice. Relative to sulfadiazine, the synthesized sulfonamide-1,2,3-triazole (3c) nanoformulae demonstrated the most promising result for toxoplasmosis treatment as it resulted in 100% survival, 100% parasite reduction along with the remarkable histopathological improvement in all the studied organs.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Antiparasitários/farmacologia , Camundongos , Sulfonamidas/farmacologia , Triazóis/química
14.
Anticancer Agents Med Chem ; 22(18): 3114-3124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35473535

RESUMO

BACKGROUND: Lung tumors express high levels of aromatase enzyme compared to surrounding normal tissue. Inhibition of aromatase has emerged as a recent therapeutic approach for the treatment of breast cancer. However, the role of aromatase inhibition in lung cancer treatment requires further investigation. METHODS: The anti-proliferative effects of aromatase inhibitors were evaluated by MTT assay. Cell migration was assessed using a wound healing assay. The mechanism of cell death was determined using the annexin VFITC/ propidium iodide staining flow cytometry method. The soft agar colony formation assay evaluated cells' capability to form colonies. RESULT: Exemestane and curcumin significantly inhibited the growth of lung cancer cell lines in a dose- and timedependent manner. The IC50 values after 48 hours of treatment with exemestane were 176, 180, and 120 µM in A549, H661, and H1299, respectively. Curcumin IC50 values after 48 hours were 80, 43, and 68 µM in A549, H661, and H1299, respectively. The combined treatment of exemestane or curcumin with cisplatin, raloxifene, and celecoxib resulted in a synergistic effect in the A549 lung cell line with a combination index of less than 1, suggesting synergism. Exemestane resulted in approximately 96% inhibition of wound closure at 100 µM, while curcumin resulted in approximately 63% inhibition of wound closure at 50 µM. Exemestane and curcumin inhibited the formation of cell colonies by reducing the number and size of formed colonies of A549, H661, and H1299 cell lines in a concentration dependent manner. Exemestane and curcumin had significantly induced apoptosis in A549 cells compared to control of untreated cells. CONCLUSION: Aromatase inhibition by exemestane or curcumin had significantly inhibited the growth of lung cancer cell lines, synergized with cisplatin, raloxifene, and celecoxib, suppressed lung cancer cell migratory potential, induced apoptosis, and reduced colony formation of lung cancer cells.


Assuntos
Curcumina , Neoplasias Pulmonares , Ágar/farmacologia , Ágar/uso terapêutico , Anexinas/farmacologia , Anexinas/uso terapêutico , Apoptose , Aromatase/metabolismo , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/uso terapêutico , Celecoxib/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Curcumina/farmacologia , Curcumina/uso terapêutico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Propídio/farmacologia , Propídio/uso terapêutico , Cloridrato de Raloxifeno/uso terapêutico
15.
Anticancer Agents Med Chem ; 22(8): 1611-1621, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34515014

RESUMO

BACKGROUND: Chronic inflammation plays a crucial role in the initiation, promotion, and invasion of tumors, and thus the antiproliferative effects of numerous anti-inflammatory drugs have been frequently reported in the literature. Upregulation of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) has been linked to various human cancers, including breast cancer. OBJECTIVES: This research aims to investigate the antiproliferative activity of different Non-steroidal anti-inflammatory drugs (NSAIDs), including COX-2 selective and non-selective agents, against various breast cancer cell lines and to elucidate possible molecular pathways involved in their activity. METHODS: The antiproliferative and combined effects of NSAIDs with raloxifene were evaluated by MTT assay. Cell migration was assessed using a wound-healing assay. The mechanism of cell death was determined using the Annexin V-FITC/ propidium iodide staining flow cytometry method. A mass spectrometry-based targeted metabolomics approach was used to profile the metabolomic changes induced in the T47d cells upon drug treatment. RESULTS: Our results have demonstrated that celecoxib, a potent and selective COX-2 inhibitor, resulted in significant antiproliferative activity against all examined breast cancer cell lines with IC50 values of 95.44, 49.50. and 97.70 µM against MDA-MB-231, T47d, and MCF-7, respectively. Additionally, celecoxib exhibited a synergistic effect against T47d cells combined with raloxifene, a selective estrogen receptor modulator. Interestingly, celecoxib treatment increased cell apoptosis and resulted in substantial inhibition of cancer cell migration. In addition, the metabolomic analysis suggests that celecoxib may have affected metabolites (n = 43) that are involved in several pathways, including the tricarboxylic acid cycle, amino acids metabolism pathways, and energy production pathways in cancer cells. CONCLUSION: Celecoxib may possess potential therapeutic utility for breast cancer treatment as monotherapy or in combination therapy. The reported metabolic changes taking place upon celecoxib treatment may shed light on possible molecular targets mediating the antiproliferative activity of celecoxib in an independent manner of its COX-2 inhibition.


Assuntos
Neoplasias da Mama , Anti-Inflamatórios não Esteroides/farmacologia , Apoptose , Neoplasias da Mama/patologia , Celecoxib/farmacologia , Proliferação de Células , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Feminino , Humanos , Metabolômica , Cloridrato de Raloxifeno/uso terapêutico
16.
Horm Mol Biol Clin Investig ; 43(2): 199-205, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34768317

RESUMO

OBJECTIVES: To evaluate the anticancer effects of calcitriol and cholecalciferol against different cell lines of breast cancer in monotherapy settings and in combination with raloxifene. METHODS: The antiproliferative, anti-migratory, and apoptotic induction effects were assessed by MTT, wound healing, and flow cytometry assays, respectively. RESULTS: Calcitriol and cholecalciferol exhibited antiproliferative effects against T47D, MCF-7, and MDA-MB-231 in a time and concentration-dependent manner. The IC50 values of calcitriol were in the range of 0.05-0.25 µM while that for cholecalciferol were in the range of 3-100 µM. Furthermore, the results showed that calcitriol and cholecalciferol exhibited anti-migratory effects on MDA-MB-231, an apoptotic induction effect on MCF-7 cells, and a synergistic effect when combined with raloxifene. CONCLUSIONS: Calcitriol and cholecalciferol exhibited anticancer effects and may be used as chemosensitizers.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Calcitriol/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Cloridrato de Raloxifeno/farmacologia , Cloridrato de Raloxifeno/uso terapêutico , Células MCF-7 , Apoptose , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico
17.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638826

RESUMO

Novel dicationic pyridinium ionic liquids tethering amphiphilic long alkyl side chains and fluorinated counter anions have been successfully synthesized by means of the quaternization of the dipyridinium hydrazone through its alkylation with different alkyl halides. The resulting halogenated di-ionic liquids underwent a metathesis reaction in order to incorporate some fluorinated counter anions in their structures. The structures of all the resulting di-ionic liquids were characterized by several spectroscopic experiments. The antitumorigenic activities of the investigated compounds were further studied against three different human lung cancer cell lines. Compared to the standard chemotherapeutic agent, cisplatin, the synthesized di-ionic liquids exerted equal, even more active, moderate, or weak anticancer activities against the various lung cancer cell lines under investigation. The observed anticancer activity appears to be enhanced by increasing the length of the aliphatic side chains. Moreover, dicationic pyridinium bearing a nine carbon chain as counter cation and hexafluoro phosphate and/or tetrafluoro bororate as counter anion were selected for further evaluation and demonstrated effective and significant antimetastatic effects and suppressed the colonization ability of the lung cancer cells, suggesting a therapeutic potential for the synthesized compounds in lung cancer treatment.


Assuntos
Antineoplásicos , Desenho de Fármacos , Neoplasias Pulmonares/tratamento farmacológico , Compostos de Piridínio , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Humanos , Hidrazonas/química , Líquidos Iônicos/química , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Compostos de Piridínio/síntese química , Compostos de Piridínio/química , Compostos de Piridínio/farmacologia
18.
Molecules ; 26(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34641563

RESUMO

Monoamine oxidases (MAOs) are oxidative enzymes that catalyze the conversion of biogenic amines into their corresponding aldehydes and ketones through oxidative deamination. Owing to the crucial role of MAOs in maintaining functional levels of neurotransmitters, the implications of its distorted activity have been associated with numerous neurological diseases. Recently, an unanticipated role of MAOs in tumor progression and metastasis has been reported. The chemical inhibition of MAOs might be a valuable therapeutic approach for cancer treatment. In this review, we reported computational approaches exploited in the design and development of selective MAO inhibitors accompanied by their biological activities. Additionally, we generated a pharmacophore model for MAO-A active inhibitors to identify the structural motifs to invoke an activity.


Assuntos
Inibidores da Monoaminoxidase/uso terapêutico , Neoplasias/enzimologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biologia Computacional , Desenho de Fármacos , Desenvolvimento de Medicamentos , Humanos , Monoaminoxidase , Inibidores da Monoaminoxidase/farmacologia , Neoplasias/tratamento farmacológico , Relação Quantitativa Estrutura-Atividade
19.
Vaccines (Basel) ; 9(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34696294

RESUMO

Myocarditis and pericarditis have been linked recently to COVID-19 vaccines without exploring the underlying mechanisms, or compared to cardiac adverse events post-non-COVID-19 vaccines. We introduce an informatics approach to study post-vaccine adverse events on the systems biology level to aid the prioritization of effective preventive measures and mechanism-based pharmacotherapy by integrating the analysis of adverse event reports from the Vaccine Adverse Event Reporting System (VAERS) with systems biology methods. Our results indicated that post-vaccine myocarditis and pericarditis were associated most frequently with mRNA COVID-19 vaccines followed by live or live-attenuated non-COVID-19 vaccines such as smallpox and anthrax vaccines. The frequencies of cardiac adverse events were affected by vaccine, vaccine type, vaccine dose, sex, and age of the vaccinated individuals. Systems biology results suggested a central role of interferon-gamma (INF-gamma) in the biological processes leading to cardiac adverse events, by impacting MAPK and JAK-STAT signaling pathways. We suggest that increasing the time interval between vaccine doses minimizes the risks of developing inflammatory adverse reactions. We also propose glucocorticoids as preferred treatments based on system biology evidence. Our informatics workflow provides an invaluable tool to study post-vaccine adverse events on the systems biology level to suggest effective mechanism-based pharmacotherapy and/or suitable preventive measures.

20.
Curr Drug Metab ; 22(7): 503-522, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34225615

RESUMO

In the drug discovery setting, undesirable ADMET properties of a pharmacophore with good predictive power obtained after a tedious drug discovery and development process may lead to late-stage attrition. The earlystage ADMET profiling has brought a new dimension to lead drug development. Although several high-throughput in vitro models are available for ADMET profiling, the in silico methods are gaining more importance because of their economic and faster prediction ability without the requirements of tedious and expensive laboratory resources. Nonetheless, in silico ADMET tools alone are not accurate, and therefore, ideally adopted along with in vitro and or in vivo methods in order to enhance the predictability power. This review summarizes the significance and challenges associated with the application of in silico tools as well as the possible scope of in vitro models for integration to improve the ADMET predictability power of these tools.


Assuntos
Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos , Farmacocinética , Animais , Simulação por Computador , Humanos , Técnicas In Vitro/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...