Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 23(4): 507-519, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38159110

RESUMO

The small-molecule inhibitor of ataxia telangiectasia and Rad3-related protein (ATR), elimusertib, is currently being tested clinically in various cancer entities in adults and children. Its preclinical antitumor activity in pediatric malignancies, however, is largely unknown. We here assessed the preclinical activity of elimusertib in 38 cell lines and 32 patient-derived xenograft (PDX) models derived from common pediatric solid tumor entities. Detailed in vitro and in vivo molecular characterization of the treated models enabled the evaluation of response biomarkers. Pronounced objective response rates were observed for elimusertib monotherapy in PDX, when treated with a regimen currently used in clinical trials. Strikingly, elimusertib showed stronger antitumor effects than some standard-of-care chemotherapies, particularly in alveolar rhabdomysarcoma PDX. Thus, elimusertib has strong preclinical antitumor activity in pediatric solid tumor models, which may translate to clinically meaningful responses in patients.


Assuntos
Antineoplásicos , Neoplasias , Criança , Humanos , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Biomarcadores , Linhagem Celular Tumoral
2.
Nat Commun ; 13(1): 4297, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879366

RESUMO

Despite advances in multi-modal treatment approaches, clinical outcomes of patients suffering from PAX3-FOXO1 fusion oncogene-expressing alveolar rhabdomyosarcoma (ARMS) remain dismal. Here we show that PAX3-FOXO1-expressing ARMS cells are sensitive to pharmacological ataxia telangiectasia and Rad3 related protein (ATR) inhibition. Expression of PAX3-FOXO1 in muscle progenitor cells is not only sufficient to increase sensitivity to ATR inhibition, but PAX3-FOXO1-expressing rhabdomyosarcoma cells also exhibit increased sensitivity to structurally diverse inhibitors of ATR. Mechanistically, ATR inhibition leads to replication stress exacerbation, decreased BRCA1 phosphorylation and reduced homologous recombination-mediated DNA repair pathway activity. Consequently, ATR inhibitor treatment increases sensitivity of ARMS cells to PARP1 inhibition in vitro, and combined treatment with ATR and PARP1 inhibitors induces complete regression of primary patient-derived ARMS xenografts in vivo. Lastly, a genome-wide CRISPR activation screen (CRISPRa) in combination with transcriptional analyses of ATR inhibitor resistant ARMS cells identifies the RAS-MAPK pathway and its targets, the FOS gene family, as inducers of resistance to ATR inhibition. Our findings provide a rationale for upcoming biomarker-driven clinical trials of ATR inhibitors in patients suffering from ARMS.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma Embrionário , Rabdomiossarcoma , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Fusão Oncogênica/genética , Fator de Transcrição PAX3/genética , Fatores de Transcrição Box Pareados/genética , Rabdomiossarcoma/genética , Rabdomiossarcoma Alveolar/tratamento farmacológico , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Embrionário/genética
4.
Nat Commun ; 11(1): 2423, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415069

RESUMO

Ewing sarcoma (EwS) is an aggressive childhood cancer likely originating from mesenchymal stem cells or osteo-chondrogenic progenitors. It is characterized by fusion oncoproteins involving EWSR1 and variable members of the ETS-family of transcription factors (in 85% FLI1). EWSR1-FLI1 can induce target genes by using GGAA-microsatellites as enhancers.Here, we show that EWSR1-FLI1 hijacks the developmental transcription factor SOX6 - a physiological driver of proliferation of osteo-chondrogenic progenitors - by binding to an intronic GGAA-microsatellite, which promotes EwS growth in vitro and in vivo. Through integration of transcriptome-profiling, published drug-screening data, and functional in vitro and in vivo experiments including 3D and PDX models, we discover that constitutively high SOX6 expression promotes elevated levels of oxidative stress that create a therapeutic vulnerability toward the oxidative stress-inducing drug Elesclomol.Collectively, our results exemplify how aberrant activation of a developmental transcription factor by a dominant oncogene can promote malignancy, but provide opportunities for targeted therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica/metabolismo , Estresse Oxidativo , Sarcoma de Ewing/patologia , Adulto , Animais , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Criança , Condrócitos/metabolismo , Metilação de DNA , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Hidrazinas/química , Células-Tronco Mesenquimais/metabolismo , Camundongos , Repetições de Microssatélites , Mitocôndrias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oncogenes , Interferência de RNA , Fatores de Transcrição SOXD/metabolismo , Sarcoma/genética
6.
Transl Oncol ; 13(2): 221-232, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31869746

RESUMO

Simultaneous inhibition of multiple molecular targets is an established strategy to improve the continuance of clinical response to therapy. Here, we screened 49 molecules with dual nanomolar inhibitory activity against BRD4 and PLK1, best classified as dual kinase-bromodomain inhibitors, in pediatric tumor cell lines for their antitumor activity. We identified two candidate dual kinase-bromodomain inhibitors with strong and tumor-specific activity against neuroblastoma, medulloblastoma, and rhabdomyosarcoma tumor cells. Dual PLK1 and BRD4 inhibitor treatment suppressed proliferation and induced apoptosis in pediatric tumor cell lines at low nanomolar concentrations. This was associated with reduced MYCN-driven gene expression as assessed by RNA sequencing. Treatment of patient-derived xenografts with dual inhibitor UMB103 led to significant tumor regression. We demonstrate that concurrent inhibition of two central regulators of MYC protein family of protooncogenes, BRD4, and PLK1, with single small molecules has strong and specific antitumor effects in preclinical pediatric cancer models.

7.
Nat Genet ; 52(1): 29-34, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31844324

RESUMO

Extrachromosomal circularization of DNA is an important genomic feature in cancer. However, the structure, composition and genome-wide frequency of extrachromosomal circular DNA have not yet been profiled extensively. Here, we combine genomic and transcriptomic approaches to describe the landscape of extrachromosomal circular DNA in neuroblastoma, a tumor arising in childhood from primitive cells of the sympathetic nervous system. Our analysis identifies and characterizes a wide catalog of somatically acquired and undescribed extrachromosomal circular DNAs. Moreover, we find that extrachromosomal circular DNAs are an unanticipated major source of somatic rearrangements, contributing to oncogenic remodeling through chimeric circularization and reintegration of circular DNA into the linear genome. Cancer-causing lesions can emerge out of circle-derived rearrangements and are associated with adverse clinical outcome. It is highly probable that circle-derived rearrangements represent an ongoing mutagenic process. Thus, extrachromosomal circular DNAs represent a multihit mutagenic process, with important functional and clinical implications for the origins of genomic remodeling in cancer.


Assuntos
Carcinogênese/patologia , DNA Circular/genética , Herança Extracromossômica/genética , Rearranjo Gênico , Genoma Humano , Neuroblastoma/patologia , Oncogenes/genética , Recombinação Genética , Humanos , Neuroblastoma/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...