Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(4): e4964, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501584

RESUMO

Worldwide, tuberculosis is the second leading infectious killer and multidrug resistance severely hampers disease control. Mycolic acids are a unique category of lipids that are essential for viability, virulence, and persistence of the causative agent, Mycobacterium tuberculosis (Mtb). Therefore, enzymes involved in mycolic acid biosynthesis represent an important class of drug targets. We previously showed that the (3R)-hydroxyacyl-ACP dehydratase (HAD) protein HadD is dedicated mainly to the production of ketomycolic acids and plays a determinant role in Mtb biofilm formation and virulence. Here, we discovered that HAD activity requires the formation of a tight heterotetramer between HadD and HadB, a HAD unit encoded by a distinct chromosomal region. Using biochemical, structural, and cell-based analyses, we showed that HadB is the catalytic subunit, whereas HadD is involved in substrate binding. Based on HadBDMtb crystal structure and substrate-bound models, we identified determinants of the ultra-long-chain lipid substrate specificity and revealed details of structure-function relationship. HadBDMtb unique function is partly due to a wider opening and a higher flexibility of the substrate-binding crevice in HadD, as well as the drastically truncated central α-helix of HadD hotdog fold, a feature described for the first time in a HAD enzyme. Taken together, our study shows that HadBDMtb , and not HadD alone, is the biologically relevant functional unit. These results have important implications for designing innovative antivirulence molecules to fight tuberculosis, as they suggest that the target to consider is not an isolated subunit, but the whole HadBD complex.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Ácido Graxo Sintase Tipo II/química , Ácidos Micólicos/metabolismo , Hidroliases/química
3.
Sci Rep ; 8(1): 6034, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29662082

RESUMO

Mycolic acids (MAs) have a strategic location within the mycobacterial envelope, deeply influencing its architecture and permeability, and play a determinant role in the pathogenicity of mycobacteria. The fatty acid synthase type II (FAS-II) multienzyme system is involved in their biosynthesis. A combination of pull-downs and proteomics analyses led to the discovery of a mycobacterial protein, HadD, displaying highly specific interactions with the dehydratase HadAB of FAS-II. In vitro activity assays and homology modeling showed that HadD is, like HadAB, a hot dog folded (R)-specific hydratase/dehydratase. A hadD knockout mutant of Mycobacterium smegmatis produced only the medium-size alpha'-MAs. Data strongly suggest that HadD is involved in building the third meromycolic segment during the late FAS-II elongation cycles, leading to the synthesis of the full-size alpha- and epoxy-MAs. The change in the envelope composition induced by hadD inactivation strongly altered the bacterial fitness and capacities to aggregate, assemble into colonies or biofilms and spread by sliding motility, and conferred a hypersensitivity to the firstline antimycobacterial drug rifampicin. This showed that the cell surface properties and the envelope integrity were greatly affected. With the alarmingly increasing case number of nontuberculous mycobacterial diseases, HadD appears as an attractive target for drug development.


Assuntos
Proteínas de Bactérias/metabolismo , Ácido Graxo Sintase Tipo II/metabolismo , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium smegmatis/fisiologia , Ácidos Micólicos/metabolismo , Proteínas de Bactérias/genética , Biofilmes , Vias Biossintéticas , Ácido Graxo Sintase Tipo II/genética , Deleção de Genes , Genes Essenciais , Humanos , Mycobacterium smegmatis/genética
4.
FEBS J ; 284(7): 1110-1125, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28222482

RESUMO

Mycobacterium tuberculosis produces a large number of structurally diverse lipids that have been implicated in the pathogenicity, persistence and antibiotic resistance of this organism. Most building blocks involved in the biosynthesis of all these lipids are generated by acyl-CoA carboxylases whose subunit composition and physiological roles have not yet been clearly established. Inconclusive data in the literature refer to the exact protein composition and substrate specificity of the enzyme complex that produces the long-chain α-carboxy-acyl-CoAs, which are substrates involved in the last step of condensation mediated by the polyketide synthase 13 to synthesize mature mycolic acids. Here we have successfully reconstituted the long-chain acyl-CoA carboxylase (LCC) complex from its purified components, the α subunit (AccA3), the ε subunit (AccE5) and the two ß subunits (AccD4 and AccD5), and demonstrated that the four subunits are essential for its activity. Furthermore, we also showed by substrate competition experiments and the use of a specific inhibitor that the AccD5 subunit's role in the carboxylation of the long acyl-CoAs, as part of the LCC complex, was structural rather than catalytic. Moreover, AccD5 was also able to carboxylate its natural substrates, acetyl-CoA and propionyl-CoA, in the context of the LCC enzyme complex. Thus, the supercomplex formed by these four subunits has the potential to generate the main substrates, malonyl-CoA, methylmalonyl-CoA and α-carboxy-C24-26 -CoA, used as condensing units for the biosynthesis of all the lipids present in this pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono-Carbono Ligases/metabolismo , Mycobacterium tuberculosis/metabolismo , Policetídeo Sintases/metabolismo , Subunidades Proteicas/metabolismo , Acetilcoenzima A/metabolismo , Acil Coenzima A/metabolismo , Proteínas de Bactérias/genética , Carbono-Carbono Ligases/genética , Clonagem Molecular , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Malonil Coenzima A/metabolismo , Mycobacterium tuberculosis/genética , Ácidos Micólicos/metabolismo , Policetídeo Sintases/genética , Engenharia de Proteínas , Subunidades Proteicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
5.
J Biol Chem ; 291(43): 22793-22805, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27590338

RESUMO

Mycolic acids are essential components of the mycobacterial cell envelope, and their biosynthetic pathway is a well known source of antituberculous drug targets. Among the promising new targets in the pathway, FadD32 is an essential enzyme required for the activation of the long meromycolic chain of mycolic acids and is essential for mycobacterial growth. Following the in-depth biochemical, biophysical, and structural characterization of FadD32, we investigated its putative regulation via post-translational modifications. Comparison of the fatty acyl-AMP ligase activity between phosphorylated and dephosphorylated FadD32 isoforms showed that the native protein is phosphorylated by serine/threonine protein kinases and that this phosphorylation induced a significant loss of activity. Mass spectrometry analysis of the native protein confirmed the post-translational modifications and identified Thr-552 as the phosphosite. Phosphoablative and phosphomimetic FadD32 mutant proteins confirmed both the position and the importance of the modification and its correlation with the negative regulation of FadD32 activity. Investigation of the mycolic acid condensation reaction catalyzed by Pks13, involving FadD32 as a partner, showed that FadD32 phosphorylation also impacts the condensation activity. Altogether, our results bring to light FadD32 phosphorylation by serine/threonine protein kinases and its correlation with the enzyme-negative regulation, thus shedding a new horizon on the mycolic acid biosynthesis modulation and possible inhibition strategies for this promising drug target.


Assuntos
Proteínas de Bactérias/metabolismo , Ligases/metabolismo , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo , Policetídeo Sintases/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Ligases/genética , Mutação de Sentido Incorreto , Mycobacterium tuberculosis/genética , Fosforilação/fisiologia , Policetídeo Sintases/genética
6.
Chem Biol ; 21(12): 1660-9, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25467124

RESUMO

Mycolate-containing compounds constitute major strategic elements of the protective coat surrounding the tubercle bacillus. We have previously shown that FAAL32-Pks13 polyketide synthase catalyzes the condensation reaction, which produces α-alkyl ß-ketoacids, direct precursors of mycolic acids. In contrast to the current biosynthesis model, we show here that Pks13 catalyzes itself the release of the neosynthesized products and demonstrate that this function is carried by its thioesterase-like domain. Most importantly, in agreement with the prediction of a trehalose-binding pocket in its catalytic site, this domain exhibits an acyltransferase activity and transfers Pks13's products onto an acceptor molecule, mainly trehalose, leading to the formation of the trehalose monomycolate precursor. Thus, this work allows elucidation of the hinge step of the mycolate-containing compound biosynthesis pathway. Above all, it highlights a unique mechanism of transfer of polyketide synthase products in mycobacteria, which is distinct from the conventional intervention of the discrete polyketide-associated protein (Pap)-type acyltransferases.


Assuntos
Proteínas de Bactérias/metabolismo , Biocatálise , Ácidos Micólicos/metabolismo , Policetídeo Sintases/metabolismo , Aciltransferases/metabolismo , Proteínas de Bactérias/química , Modelos Moleculares , Policetídeo Sintases/química , Polímeros/metabolismo , Estrutura Terciária de Proteína , Especificidade por Substrato , Trealose/metabolismo
7.
PLoS One ; 9(6): e99853, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24950047

RESUMO

Mycobacteria contain a large variety of fatty acids which are used for the biosynthesis of several complex cell wall lipids that have been implicated in the ability of the organism to resist host defenses. The building blocks for the biosynthesis of all these lipids are provided by a fairly complex set of acyl-CoA carboxylases (ACCases) whose subunit composition and roles within these organisms have not yet been clearly established. Previous biochemical and structural studies provided strong evidences that ACCase 5 from Mycobacterium tuberculosis is formed by the AccA3, AccD5 and AccE5 subunits and that this enzyme complex carboxylates acetyl-CoA and propionyl-CoA with a clear substrate preference for the latest. In this work we used a genetic approach to unambiguously demonstrate that the products of both accD5 and accE5 genes are essential for the viability of Mycobacterium smegmatis. By obtaining a conditional mutant on the accD5-accE5 operon, we also demonstrated that the main physiological role of this enzyme complex was to provide the substrates for fatty acid and mycolic acid biosynthesis. Furthermore, enzymatic and biochemical analysis of the conditional mutant provided strong evidences supporting the notion that AccD5 and/or AccE5 have an additional role in the carboxylation of long chain acyl-CoA prior to mycolic acid condensation. These studies represent a significant step towards a better understanding of the roles of ACCases in mycobacteria and confirm ACCase 5 as an interesting target for the development of new antimycobacterial drugs.


Assuntos
Carbono-Carbono Ligases/genética , Parede Celular/genética , Lipídeos/biossíntese , Mycobacterium smegmatis/genética , Acetilcoenzima A , Acil Coenzima A , Sequência de Aminoácidos , Parede Celular/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Lipogênese , Mycobacterium smegmatis/metabolismo , Ácidos Micólicos/metabolismo
8.
Eur J Med Chem ; 45(12): 5833-47, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20961671

RESUMO

The 8-, 9-, 10-, and 11-halo, hydroxy, and methoxy derivatives of the antimycobacterial 3,3-dimethyl-3H-benzofuro[3,2-f][1]benzopyran were synthesized by condensation of the diazonium salts of 2-chloroanilines (13-17) with 1,4-benzoquinone (18), reduction of the intermediate phenylbenzoquinones 19-22 to dihydroxybiphenyls, cyclisation to halo-2-hydroxydibenzofurans 24-27, and construction of the pyran ring by thermal rearrangement of the corresponding dimethylpropargyl ethers 35-38. Palladium catalyzed nucleophilic aromatic substitution permitted conversion of the halo to the corresponding hydroxy derivatives which were methylated to methoxy-3,3-dimethyl-3H-benzofuro[3,2-f][1]benzopyran. All compounds substituted on the A ring were found more potent than the reference compound 1 against Mycobacterium bovis BCG and the virulent strain Mycobacterium tuberculosis H37Rv. The effect of the most active derivatives on mycolate synthesis was explored in order to confirm the preliminary hypothesis of an effect on mycobacterial cell wall biosynthesis. The linear 9-methoxy-2,2-dimethyl-2H-benzofuro[2,3-g][1]benzopyran (46) exhibiting a good antimycobacterial activity and devoid of cytotoxicity appeared to be the most promising compound.


Assuntos
Antituberculosos/síntese química , Antituberculosos/farmacologia , Benzofuranos/síntese química , Benzofuranos/farmacologia , Benzopiranos/síntese química , Benzopiranos/farmacologia , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Animais , Antituberculosos/química , Morte Celular/efeitos dos fármacos , Chlorocebus aethiops , Testes de Sensibilidade Microbiana , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Células Vero
9.
Microbiology (Reading) ; 156(Pt 6): 1619-1631, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20185505

RESUMO

Eukaryotic-like Ser/Thr protein kinases (STPKs) are present in many bacterial species, where they control various physiological and virulence processes by enabling microbial adaptation to specific environmental signals. PknJ is the only member of the 11 STPKs identified in Mycobacterium tuberculosis that still awaits characterization. Here we report that PknJ is a functional kinase that forms dimers in vitro, and contains a single transmembrane domain. Using a high-density peptide-chip-based technology, multiple potential mycobacterial targets were identified for PknJ. We confirmed PknJ-dependent phosphorylation of four of these targets: PknJ itself, which autophosphorylates at Thr(168), Thr(171) and Thr(173) residues; the transcriptional regulator EmbR; the methyltransferase MmaA4/Hma involved in mycolic acid biosynthesis; and the dipeptidase PepE, whose encoding gene is located next to pknJ in the mycobacterial genome. Our results provide a number of candidate phospho-targets for PknJ and possibly other mycobacterial STPKs that could be studied to investigate the role of STPKs in M. tuberculosis physiology and virulence.


Assuntos
Mycobacterium tuberculosis/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Dimerização , Camundongos , Dados de Sequência Molecular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência , Serina/metabolismo , Transdução de Sinais , Treonina/metabolismo , Tuberculose/microbiologia , Virulência
10.
J Biol Chem ; 284(29): 19321-30, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19439410

RESUMO

S-Adenosylmethionine-dependent methyltransferases (AdoMet-MTs) constitute a large family of enzymes specifically transferring a methyl group to a range of biologically active molecules. Mycobacterium tuberculosis produces a set of paralogous AdoMet-MTs responsible for introducing key chemical modifications at defined positions of mycolic acids, which are essential and specific components of the mycobacterial cell envelope. We investigated the inhibition of these mycolic acid methyltransferases (MA-MTs) by structural analogs of the AdoMet cofactor. We found that S-adenosyl-N-decyl-aminoethyl, a molecule in which the amino acid moiety of AdoMet is substituted by a lipid chain, inhibited MA-MTs from Mycobacterium smegmatis and M. tuberculosis strains, both in vitro and in vivo, with IC(50) values in the submicromolar range. By contrast, S-adenosylhomocysteine, the demethylated reaction product, and sinefungin, a general AdoMet-MT inhibitor, did not inhibit MA-MTs. The interaction between Hma (MmaA4), which is strictly required for the biosynthesis of oxygenated mycolic acids in M. tuberculosis, and the three cofactor analogs was investigated by x-ray crystallography. The high resolution crystal structures obtained illustrate the bisubstrate nature of S-adenosyl-N-decyl-aminoethyl and provide insight into its mode of action in the inhibition of MA-MTs. This study has potential implications for the design of new drugs effective against multidrug-resistant and persistent tubercle bacilli.


Assuntos
Adenosina/análogos & derivados , Inibidores Enzimáticos/farmacologia , Metiltransferases/antagonistas & inibidores , Mycobacterium tuberculosis/enzimologia , Ácidos Micólicos/metabolismo , Adenosina/química , Adenosina/farmacologia , Domínio Catalítico , Divisão Celular/efeitos dos fármacos , Cristalografia por Raios X , Inibidores Enzimáticos/química , Metiltransferases/química , Metiltransferases/metabolismo , Modelos Moleculares , Estrutura Molecular , Mycobacterium/enzimologia , Mycobacterium/metabolismo , Mycobacterium tuberculosis/citologia , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/química , Ligação Proteica , Estrutura Terciária de Proteína , S-Adenosil-Homocisteína/química , S-Adenosil-Homocisteína/farmacologia , S-Adenosilmetionina/química , S-Adenosilmetionina/farmacologia , Especificidade da Espécie
11.
J Biol Chem ; 284(29): 19255-64, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19436070

RESUMO

The last steps of the biosynthesis of mycolic acids, essential and specific lipids of Mycobacterium tuberculosis and related bacteria, are catalyzed by proteins encoded by the fadD32-pks13-accD4 cluster. Here, we produced and purified an active form of the Pks13 polyketide synthase, with a phosphopantetheinyl (P-pant) arm at both positions Ser-55 and Ser-1266 of its two acyl carrier protein (ACP) domains. Combination of liquid chromatography-tandem mass spectrometry of protein tryptic digests and radiolabeling experiments showed that, in vitro, the enzyme specifically loads long-chain 2-carboxyacyl-CoA substrates onto the P-pant arm of its C-terminal ACP domain via the acyltransferase domain. The acyl-AMPs produced by the FadD32 enzyme are specifically transferred onto the ketosynthase domain after binding to the P-pant moiety of the N-terminal ACP domain of Pks13 (N-ACP(Pks13)). Unexpectedly, however, the latter step requires the presence of active FadD32. Thus, the couple FadD32-(N-ACP(Pks13)) composes the initiation module of the mycolic condensation system. Pks13 ultimately condenses the two loaded fatty acyl chains to produce alpha-alkyl beta-ketoacids, the precursors of mycolic acids. The developed in vitro assay will constitute a strategic tool for antimycobacterial drug screening.


Assuntos
Proteínas de Bactérias/metabolismo , Coenzima A Ligases/metabolismo , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo , Policetídeo Sintases/metabolismo , Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Vias Biossintéticas , Cromatografia Líquida , Coenzima A Ligases/genética , Eletroforese em Gel de Poliacrilamida , Estrutura Molecular , Mycobacterium tuberculosis/genética , Ácidos Micólicos/química , Fragmentos de Peptídeos/química , Policetídeo Sintases/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrometria de Massas em Tandem
12.
PLoS Pathog ; 4(11): e1000204, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19002241

RESUMO

Tuberculosis (TB) is characterized by a tight interplay between Mycobacterium tuberculosis and host cells within granulomas. These cellular aggregates restrict bacterial spreading, but do not kill all the bacilli, which can persist for years. In-depth investigation of M. tuberculosis interactions with granuloma-specific cell populations are needed to gain insight into mycobacterial persistence, and to better understand the physiopathology of the disease. We have analyzed the formation of foamy macrophages (FMs), a granuloma-specific cell population characterized by its high lipid content, and studied their interaction with the tubercle bacillus. Within our in vitro human granuloma model, M. tuberculosis long chain fatty acids, namely oxygenated mycolic acids (MA), triggered the differentiation of human monocyte-derived macrophages into FMs. In these cells, mycobacteria no longer replicated and switched to a dormant non-replicative state. Electron microscopy observation of M. tuberculosis-infected FMs showed that the mycobacteria-containing phagosomes migrate towards host cell lipid bodies (LB), a process which culminates with the engulfment of the bacillus into the lipid droplets and with the accumulation of lipids within the microbe. Altogether, our results suggest that oxygenated mycolic acids from M. tuberculosis play a crucial role in the differentiation of macrophages into FMs. These cells might constitute a reservoir used by the tubercle bacillus for long-term persistence within its human host, and could provide a relevant model for the screening of new antimicrobials against non-replicating persistent mycobacteria.


Assuntos
Diferenciação Celular , Células Espumosas/microbiologia , Granuloma/microbiologia , Macrófagos/microbiologia , Ácidos Micólicos , Tuberculose/microbiologia , Humanos , Lipídeos , Macrófagos/patologia , Macrófagos/ultraestrutura , Infecções por Mycobacterium/imunologia , Mycobacterium tuberculosis/fisiologia , Fagocitose , Tuberculose/imunologia
13.
J Biol Chem ; 281(7): 4434-45, 2006 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16356931

RESUMO

Mycolic acids are major and specific components of the cell envelope of Mycobacteria that include Mycobacterium tuberculosis, the causative agent of tuberculosis. Their metabolism is the target of the most efficient antitubercular drug currently used in therapy, and the enzymes that are involved in the production of mycolic acids represent important targets for the development of new drugs effective against multidrug-resistant strains. Among these are the S-adenosylmethionine-dependent methyltransferases (SAM-MTs) that catalyze the introduction of key chemical modifications in defined positions of mycolic acids. Some of these subtle structural variations are known to be crucial for both the virulence of the tubercle bacillus and the permeability of the mycobacterial cell envelope. We report here the structural characterization of the enzyme Hma (MmaA4), a SAM-MT that is unique in catalyzing the introduction of a methyl branch together with an adjacent hydroxyl group essential for the formation of both keto- and methoxymycolates in M. tuberculosis. Despite the high propensity of Hma to proteolytic degradation, the enzyme was produced and crystallized, and its three-dimensional structure in the apoform and in complex with S-adenosylmethionine was solved to about 2 A. Thestructuresshowtheimportantroleplayedbythemodificationsfound within mycolic acid SAM-MTs, especially thealpha2-alpha3 motif and the chemical environment of the active site. Essential information with respect to cofactor and substrate binding, selectivity and specificity, and about the mechanism of catalytic reaction were derived.


Assuntos
Proteínas de Bactérias/química , Metiltransferases/química , Oxigenases de Função Mista/química , Mycobacterium tuberculosis/enzimologia , Ácidos Micólicos/metabolismo , S-Adenosilmetionina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalização , Dados de Sequência Molecular , Estrutura Terciária de Proteína
14.
J Biol Chem ; 280(10): 8862-74, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15632194

RESUMO

Mycolic acids are major and specific long-chain fatty acids of the cell envelope of several important human pathogens such as Mycobacterium tuberculosis, M. leprae, and Corynebacterium diphtheriae. Their biosynthesis is essential for mycobacterial growth and represents an attractive target for developing new antituberculous drugs. We have previously shown that the pks13 gene encodes condensase, the enzyme that performs the final condensation step of mycolic acid biosynthesis and is flanked by two genes, fadD32 and accD4. To determine the functions of the gene products we generated two mutants of C. glutamicum with an insertion/deletion within either fadD32 or accD4. The two mutant strains were deficient in mycolic acid production and exhibited the colony morphology that typifies the mycolate-less mutants of corynebacteria. Application of multiple analytical approaches to the analysis of the mutants demonstrated the accumulation of a tetradecylmalonic acid in the DeltafadD32::km mutant and its absence from the DeltaaccD4::km strain. The parental corynebacterial phenotype was restored upon the transfer of the wild-type fadD32 and accD4 genes in the mutants. These data demonstrated that both FadD32 and AccD4-containing acyl-CoA carboxylase are required for the production of mycolic acids. They also prove that the proteins catalyze, respectively, the activation of one fatty acid substrate and the carboxylation of the other substrate, solving the long-debated question of the mechanism involved in the condensation reaction. We used comparative genomics and applied a combination of molecular biology and proteomic technologies to the analysis of proteins that co-immunoprecipitated with AccD4. This resulted in the identification of AccA3 and AccD5 as subunits of the acyl-CoA carboxylase. Finally, we used conditionally replicative plasmids to show that both the fadD32 and accD4 genes are essential for the survival of M. smegmatis. Thus, in addition to Pks13, FadD32 and AccD4 are promising targets for the development of new antimicrobial drugs against pathogenic species of mycobacteria and related microorganisms.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono-Carbono Ligases/metabolismo , Mycobacterium tuberculosis/crescimento & desenvolvimento , Ácidos Micólicos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sequência de Bases , Carbono-Carbono Ligases/química , Divisão Celular , Sequência Conservada , Corynebacterium diphtheriae/crescimento & desenvolvimento , Primers do DNA , DNA Bacteriano/genética , Ácidos Graxos/biossíntese , Ácidos Graxos/química , Cromatografia Gasosa-Espectrometria de Massas , Dados de Sequência Molecular , Mycobacterium leprae/crescimento & desenvolvimento , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
15.
Microbiology (Reading) ; 144 ( Pt 9): 2539-2544, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9782502

RESUMO

Initial transport kinetics of isoniazid (INH) and its uptake at the plateau were studied in Mycobacterium tuberculosis H37Rv under various experimental conditions. The initial uptake velocity increased linearly with INH concentration from 2 x 10(-6) M to 10(-2) M. It was modified neither by addition of a protonophore that abolished proline transport, nor following ATP depletion by arsenate, which inhibited glycerol uptake, two transport processes taken as controls for secondary active transport and facilitated diffusion, respectively. Microaerobiosis or low temperature (4 degrees C) were without effect on initial uptake. It is thus likely that INH transport in M. tuberculosis proceeds by a passive diffusion mechanism, and that catalase-peroxidase (KatG) is not involved in the actual transport. However, conditions inhibiting KatG activity (high INH concentration, microaerobiosis, low temperature) decrease cell radioactivity at the uptake plateau. It is proposed that INH transport occurs by passive diffusion. KatG is involved only in the intracellular accumulation of oxidized derivatives of INH, especially of isonicotinic acid, which is trapped inside cells in its ionized form. This model explains observed and previously known characteristics of the accumulation of radioactivity in the presence of [14C]INH for various species and strains of mycobacteria.


Assuntos
Antituberculosos/farmacocinética , Proteínas de Bactérias , Isoniazida/farmacocinética , Mycobacterium tuberculosis/metabolismo , Arseniatos/farmacologia , Transporte Biológico Ativo/efeitos dos fármacos , Radioisótopos de Carbono , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Difusão , Ionóforos/farmacologia , Cinética , Modelos Biológicos , Mycobacterium tuberculosis/efeitos dos fármacos , Peroxidases/metabolismo , Temperatura
16.
Microbiology (Reading) ; 142 ( Pt 6): 1513-1520, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8704991

RESUMO

We studied the outermost constituents of the cell envelopes, which are involved in the interaction between the bacilli and the host cells, of five pathogenic and non-pathogenic mycobacterial species for comparison with those we have previously characterized from M. tuberculosis. The extracellular materials (ECMs) were isolated by ethanol precipitation and compared to the surface-exposed materials (SXMs) extracted by mechanical means. The materials from both sources were composed almost exclusively of polysaccharides and proteins. Two groups of mycobacteria were clearly distinguishable. The first group comprised the pathogenic species M. kansasii which produced large amounts of ECM, the glycosyl composition of which was similar to that of the SXM. The second group comprised M. avium and the non-pathogenic strains of M. gastri, M. phlei and M. smegmatis which produced small amounts of ECK This latter group could be subdivided into those which produced carbohydrate-rich ECM (M. avium and M. gastri) and those forming protein-rich ECM (M. phlei and M. smegmatis), a classification that correlated with the difference in the growth rate of the two subgroups. The glycosyl composition of the ECM of a given species was qualitatively similar to that of the SXM, except for M. avium and M. phlei whose SXM were devoid of arabinose. In addition to glucose, mannose and arabinose, xylose was detected in the hydrolysis products of the ECM and SXM of M. smegmatis, the SXM of M. phlei and the ECM of some batches of M. avium. The polysaccharide constituents of the ECM and SXM of the different mycobacteria were purified by anion-exchange and gel-filtration chromatography; all were found to be neutral compounds devoid of acyl substituents. The extracellular polysaccharides consisted of high-molecular-mass glycogen-like glucans, arabinomannans and mannans, structurally similar to the corresponding substances previously characterized from the capsule of M. tuberculosis. The same types of polysaccharides were characterized from the SXM of all the strains, except M. avium and M. phlei which were devoid of arabinomannans. This study questions the unique and universal representation of the mycobacterial cell envelope and the existence of the so-called acidic polysaccharide-rich outer layer.


Assuntos
Mycobacterium/química , Polissacarídeos Bacterianos/isolamento & purificação , Antígenos de Bactérias/isolamento & purificação , Configuração de Carboidratos , Carboidratos/análise , Espaço Extracelular/química , Estrutura Molecular , Mycobacterium avium/química , Micobactérias não Tuberculosas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...