Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 115: 229-247, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858741

RESUMO

Childhood is recognised as a period of immense physical and emotional development, and this, in part, is driven by underlying neurophysiological transformations. These neurodevelopmental processes are unique to the paediatric brain and are facilitated by augmented rates of neuroplasticity and expanded neural stem cell populations within neurogenic niches. However, given the immaturity of the developing central nervous system, innate protective mechanisms such as neuroimmune and antioxidant responses are functionally naïve which results in periods of heightened sensitivity to neurotoxic insult. This is highly relevant in the context of paediatric cancer, and in particular, the neurocognitive symptoms associated with treatment, such as surgery, radio- and chemotherapy. The vulnerability of the developing brain may increase susceptibility to damage and persistent symptomology, aligning with reports of more severe neurocognitive dysfunction in children compared to adults. It is therefore surprising, given this intensified neurocognitive burden, that most of the pre-clinical, mechanistic research focuses exclusively on adult populations and extrapolates findings to paediatric cohorts. Given this dearth of age-specific research, throughout this review we will draw comparisons with neurodevelopmental disorders which share comparable pathways to cancer treatment related side-effects. Furthermore, we will examine the unique nuances of the paediatric brain along with the somatic systems which influence neurological function. In doing so, we will highlight the importance of developing in vitro and in vivo paediatric disease models to produce age-specific discovery and clinically translatable research.


Assuntos
Encefalopatias , Comprometimento Cognitivo Relacionado à Quimioterapia , Neoplasias , Adulto , Criança , Humanos , Encéfalo
2.
Nat Methods ; 20(12): 2034-2047, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38052989

RESUMO

Ventral midbrain dopaminergic neurons project to the striatum as well as the cortex and are involved in movement control and reward-related cognition. In Parkinson's disease, nigrostriatal midbrain dopaminergic neurons degenerate and cause typical Parkinson's disease motor-related impairments, while the dysfunction of mesocorticolimbic midbrain dopaminergic neurons is implicated in addiction and neuropsychiatric disorders. Study of the development and selective neurodegeneration of the human dopaminergic system, however, has been limited due to the lack of an appropriate model and access to human material. Here, we have developed a human in vitro model that recapitulates key aspects of dopaminergic innervation of the striatum and cortex. These spatially arranged ventral midbrain-striatum-cortical organoids (MISCOs) can be used to study dopaminergic neuron maturation, innervation and function with implications for cell therapy and addiction research. We detail protocols for growing ventral midbrain, striatal and cortical organoids and describe how they fuse in a linear manner when placed in custom embedding molds. We report the formation of functional long-range dopaminergic connections to striatal and cortical tissues in MISCOs, and show that injected, ventral midbrain-patterned progenitors can mature and innervate the tissue. Using these assembloids, we examine dopaminergic circuit perturbations and show that chronic cocaine treatment causes long-lasting morphological, functional and transcriptional changes that persist upon drug withdrawal. Thus, our method opens new avenues to investigate human dopaminergic cell transplantation and circuitry reconstruction as well as the effect of drugs on the human dopaminergic system.


Assuntos
Doença de Parkinson , Humanos , Mesencéfalo/anatomia & histologia , Mesencéfalo/fisiologia , Dopamina , Neurônios Dopaminérgicos , Corpo Estriado
3.
Am J Psychiatry ; : appiajp20220723, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37915216

RESUMO

OBJECTIVE: Schizophrenia is a brain disorder that originates during neurodevelopment and has complex genetic and environmental etiologies. Despite decades of clinical evidence of altered striatal function in affected patients, studies examining its cellular and molecular mechanisms in humans are limited. To explore neurodevelopmental alterations in the striatum associated with schizophrenia, the authors established a method for the differentiation of induced pluripotent stem cells (iPSCs) into ventral forebrain organoids (VFOs). METHODS: VFOs were generated from postmortem dural fibroblast-derived iPSCs of four individuals with schizophrenia and four neurotypical control individuals for whom postmortem caudate genotypes and transcriptomic data were profiled in the BrainSeq neurogenomics consortium. Individuals were selected such that the two groups had nonoverlapping schizophrenia polygenic risk scores (PRSs). RESULTS: Single-cell RNA sequencing analyses of VFOs revealed differences in developmental trajectory between schizophrenia and control individuals in which inhibitory neuronal cells from the patients exhibited accelerated maturation. Furthermore, upregulated genes in inhibitory neurons in schizophrenia VFOs showed a significant overlap with upregulated genes in postmortem caudate tissue of individuals with schizophrenia compared with control individuals, including the donors of the iPSC cohort. CONCLUSIONS: The findings suggest that striatal neurons derived from high-PRS individuals with schizophrenia carry abnormalities that originated during early brain development and that the VFO model can recapitulate disease-relevant cell type-specific neurodevelopmental phenotypes in a dish.

4.
Sci Adv ; 9(43): eadf1332, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37878712

RESUMO

Cancers in the central nervous system resist therapies effective in other cancers, possibly due to the unique biochemistry of the human brain microenvironment composed of cerebrospinal fluid (CSF). However, the impact of CSF on cancer cells and therapeutic efficacy is unknown. Here, we examined the effect of human CSF on glioblastoma (GBM) tumors from 25 patients. We found that CSF induces tumor cell plasticity and resistance to standard GBM treatments (temozolomide and irradiation). We identified nuclear protein 1 (NUPR1), a transcription factor hampering ferroptosis, as a mediator of therapeutic resistance in CSF. NUPR1 inhibition with a repurposed antipsychotic, trifluoperazine, enhanced the killing of GBM cells resistant to chemoradiation in CSF. The same chemo-effective doses of trifluoperazine were safe for human neurons and astrocytes derived from pluripotent stem cells. These findings reveal that chemoradiation efficacy decreases in human CSF and suggest that combining trifluoperazine with standard care may improve the survival of patients with GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Trifluoperazina/farmacologia , Trifluoperazina/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Temozolomida/farmacologia , Quimiorradioterapia , Linhagem Celular Tumoral , Microambiente Tumoral
5.
Trends Cancer ; 9(3): 223-236, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36460606

RESUMO

Glioblastoma (GBM) remains the most lethal primary brain cancer largely due to recurrence of treatment-resistant disease. Current therapies are ultimately ineffective as GBM tumour cells adapt their identity to escape treatment. Recent advances in single-cell epigenetics and transcriptomics highlight heterogeneous cell populations in GBM tumours originating from unique cancerous genetic aberrations. However, they also suggest that tumour cells conserve molecular properties of parent neuronal cells, with their permissive epigenetic profiles enabling them to morph along a finite number of reprogramming routes to evade treatment. Here, we review the known tumourigenic, neurodevelopmental and brain-injury boundaries of GBM plasticity, and propose that effective treatment of GBM requires the addition of therapeutics that restrain GBM plasticity.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/genética , Glioblastoma/genética , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Epigênese Genética
6.
NPJ Parkinsons Dis ; 8(1): 134, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36258029

RESUMO

Complex genetic predispositions accelerate the chronic degeneration of midbrain substantia nigra neurons in Parkinson's disease (PD). Deciphering the human molecular makeup of PD pathophysiology can guide the discovery of therapeutics to slow the disease progression. However, insights from human postmortem brain studies only portray the latter stages of PD, and there is a lack of data surrounding molecular events preceding the neuronal loss in patients. We address this gap by identifying the gene dysregulation of live midbrain neurons reprogrammed in vitro from the skin cells of 42 individuals, including sporadic and familial PD patients and matched healthy controls. To minimize bias resulting from neuronal reprogramming and RNA-seq methods, we developed an analysis pipeline integrating PD transcriptomes from different RNA-seq datasets (unsorted and sorted bulk vs. single-cell and Patch-seq) and reprogramming strategies (induced pluripotency vs. direct conversion). This PD cohort's transcriptome is enriched for human genes associated with known clinical phenotypes of PD, regulation of locomotion, bradykinesia and rigidity. Dysregulated gene expression emerges strongest in pathways underlying synaptic transmission, metabolism, intracellular trafficking, neural morphogenesis and cellular stress/immune responses. We confirmed a synaptic impairment with patch-clamping and identified pesticides and endoplasmic reticulum stressors as the most significant gene-chemical interactions in PD. Subsequently, we associated the PD transcriptomic profile with candidate pharmaceuticals in a large database and a registry of current clinical trials. This study highlights human transcriptomic pathways that can be targeted therapeutically before the irreversible neuronal loss. Furthermore, it demonstrates the preclinical relevance of unbiased large transcriptomic assays of reprogrammed patient neurons.

7.
NPJ Parkinsons Dis ; 8(1): 103, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948563

RESUMO

Several mutations that cause Parkinson's disease (PD) have been identified over the past decade. These account for 15-25% of PD cases; the rest of the cases are considered sporadic. Currently, it is accepted that PD is not a single monolithic disease but rather a constellation of diseases with some common phenotypes. While rodent models exist for some of the PD-causing mutations, research on the sporadic forms of PD is lagging due to a lack of cellular models. In our study, we differentiated PD patient-derived dopaminergic (DA) neurons from the induced pluripotent stem cells (iPSCs) of several PD-causing mutations as well as from sporadic PD patients. Strikingly, we observed a common neurophysiological phenotype: neurons derived from PD patients had a severe reduction in the rate of synaptic currents compared to those derived from healthy controls. While the relationship between mutations in genes such as the SNCA and LRRK2 and a reduction in synaptic transmission has been investigated before, here we show evidence that the pathogenesis of the synapses in neurons is a general phenotype in PD. Analysis of RNA sequencing results displayed changes in gene expression in different synaptic mechanisms as well as other affected pathways such as extracellular matrix-related pathways. Some of these dysregulated pathways are common to all PD patients (monogenic or idiopathic). Our data, therefore, show changes that are central and convergent to PD and suggest a strong involvement of the tetra-partite synapse in PD pathophysiology.

9.
Stem Cell Reports ; 17(3): 489-506, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35180396

RESUMO

Advances in cellular reprogramming have radically increased the use of patient-derived cells for neurological research in vitro. However, adherence of human neurons on tissue cultureware is unreliable over the extended periods required for electrophysiological maturation. Adherence issues are particularly prominent for transferable glass coverslips, hindering imaging and electrophysiological assays. Here, we assessed thin-film plasma polymer treatments, polymeric factors, and extracellular matrix coatings for extending the adherence of human neuronal cultures on glass. We find that positive-charged, amine-based plasma polymers improve the adherence of a range of human brain cells. Diaminopropane (DAP) treatment with laminin-based coating optimally supports long-term maturation of fundamental ion channel properties and synaptic activity of human neurons. As proof of concept, we demonstrated that DAP-treated glass is ideal for live imaging, patch-clamping, and optogenetics. A DAP-treated glass surface reduces the technical variability of human neuronal models and enhances electrophysiological maturation, allowing more reliable discoveries of treatments for neurological and psychiatric disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Aminas , Encéfalo , Humanos , Neurônios , Polímeros
10.
J Neurosci ; 41(5): 937-946, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33431632

RESUMO

Single-cell transcriptomic approaches are revolutionizing neuroscience. Integrating this wealth of data with morphology and physiology, for the comprehensive study of neuronal biology, requires multiplexing gene expression data with complementary techniques. To meet this need, multiple groups in parallel have developed "Patch-seq," a modification of whole-cell patch-clamp protocols that enables mRNA sequencing of cell contents after electrophysiological recordings from individual neurons and morphologic reconstruction of the same cells. In this review, we first outline the critical technical developments that enabled robust Patch-seq experimental efforts and analytical solutions to interpret the rich multimodal data generated. We then review recent applications of Patch-seq that address novel and long-standing questions in neuroscience. These include the following: (1) targeted study of specific neuronal populations based on their anatomic location, functional properties, lineage, or a combination of these factors; (2) the compilation and integration of multimodal cell type atlases; and (3) the investigation of the molecular basis of morphologic and functional diversity. Finally, we highlight potential opportunities for further technical development and lines of research that may benefit from implementing the Patch-seq technique. As a multimodal approach at the intersection of molecular neurobiology and physiology, Patch-seq is uniquely positioned to directly link gene expression to brain function.


Assuntos
Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Análise de Célula Única/métodos , Transcriptoma/fisiologia , Animais , Células Cultivadas , Fenômenos Eletrofisiológicos/fisiologia , Previsões , Humanos , Técnicas de Patch-Clamp/tendências , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/tendências , Análise de Célula Única/tendências
11.
Autophagy ; 17(9): 2217-2237, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32960680

RESUMO

The macroautophagy/autophagy-lysosome axis enables the clearance and degradation of cytoplasmic components including protein aggregates, damaged organelles and invading pathogens. Protein aggregation and lysosomal system dysfunction in the brain are common features of several late-onset neurological disorders including Alzheimer disease. Spatial overlap between depletion of the endosomal-sorting complex retromer and MAPT/tau aggregation in the brain have been previously reported. However, whether retromer dysfunction plays a direct role in mediating MAPT aggregation remains unclear. Here, we demonstrate that the autophagy-lysosome axis is the primary mode for the clearance of aggregated species of MAPT using both chemical and genetic approaches in cell models of amyloid MAPT aggregation. We show that depletion of the central retromer component VPS35 causes a block in the resolution of autophagy. We establish that this defect underlies marked accumulation of cytoplasmic MAPT aggregates upon VPS35 depletion, and that VPS35 overexpression has the opposite effect. This work illustrates how retromer complex integrity regulates the autophagy-lysosome axis to suppress MAPT aggregation and spread.


Assuntos
Doença de Alzheimer , Autofagia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Autofagia/fisiologia , Endossomos/metabolismo , Humanos , Lisossomos/metabolismo , Transporte Proteico/fisiologia , Proteínas tau/metabolismo
12.
Nat Commun ; 11(1): 5550, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144563

RESUMO

The capabilities of imaging technologies, fluorescent sensors, and optogenetics tools for cell biology are advancing. In parallel, cellular reprogramming and organoid engineering are expanding the use of human neuronal models in vitro. This creates an increasing need for tissue culture conditions better adapted to live-cell imaging. Here, we identify multiple caveats of traditional media when used for live imaging and functional assays on neuronal cultures (i.e., suboptimal fluorescence signals, phototoxicity, and unphysiological neuronal activity). To overcome these issues, we develop a neuromedium called BrainPhys™ Imaging (BPI) in which we optimize the concentrations of fluorescent and phototoxic compounds. BPI is based on the formulation of the original BrainPhys medium. We benchmark available neuronal media and show that BPI enhances fluorescence signals, reduces phototoxicity and optimally supports the electrical and synaptic activity of neurons in culture. We also show the superior capacity of BPI for optogenetics and calcium imaging of human neurons. Altogether, our study shows that BPI improves the quality of a wide range of fluorescence imaging applications with live neurons in vitro while supporting optimal neuronal viability and function.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Diagnóstico por Imagem , Neurônios/fisiologia , Optogenética , Potenciais de Ação/fisiologia , Animais , Sobrevivência Celular , Células Cultivadas , Líquido Cefalorraquidiano/metabolismo , Meios de Cultura , Fluorescência , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Luz , Rede Nervosa/fisiologia , Concentração Osmolar , Ratos , Razão Sinal-Ruído , Sinapses/fisiologia
13.
Clin Transl Immunology ; 9(10): e1191, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33082953

RESUMO

OBJECTIVES: Targeted immunotherapies such as chimeric antigen receptor (CAR)-T cells are emerging as attractive treatment options for glioblastoma, but rely on identification of a suitable tumor antigen. We validated a new target antigen for glioblastoma, fibroblast activation protein (FAP), by undertaking a detailed expression study of human samples. METHODS: Glioblastoma and normal tissues were assessed using immunostaining, supported by analyses of published transcriptomic datasets. Short-term cultures of glioma neural stem (GNS) cells were compared to cultures of healthy astrocytes and neurons using flow cytometry. Glioblastoma tissues were dissociated and analysed by high-parameter flow cytometry and single-cell transcriptomics (scRNAseq). RESULTS: Compared to normal brain, FAP was overexpressed at the gene and protein level in a large percentage of glioblastoma tissues, with highest levels of expression associated with poorer prognosis. FAP was also overexpressed in several paediatric brain cancers. FAP was commonly expressed by cultured GNS cells but absent from normal neurons and astrocytes. Within glioblastoma tissues, the strongest expression of FAP was around blood vessels. In fact, almost every tumor vessel was highlighted by FAP expression, whereas normal tissue vessels and cultured endothelial cells (ECs) lacked expression. Single-cell analyses of dissociated tumors facilitated a detailed characterisation of the main cellular components of the glioblastoma microenvironment and revealed that vessel-localised FAP is because of expression on both ECs and pericytes. CONCLUSION: Fibroblast activation protein is expressed by multiple cell types within glioblastoma, highlighting it as an ideal immunotherapy antigen to target destruction of both tumor cells and their supporting vascular network.

14.
NPJ Parkinsons Dis ; 6: 8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32352027

RESUMO

Parkinson's disease (PD) is the second most prevalent neurological disorder and has been the focus of intense investigations to understand its etiology and progression, but it still lacks a cure. Modeling diseases of the central nervous system in vitro with human induced pluripotent stem cells (hiPSC) is still in its infancy but has the potential to expedite the discovery and validation of new treatments. Here, we discuss the interplay between genetic predispositions and midbrain neuronal impairments in people living with PD. We first summarize the prevalence of causal Parkinson's genes and risk factors reported in 74 epidemiological and genomic studies. We then present a meta-analysis of 385 hiPSC-derived neuronal lines from 67 recent independent original research articles, which point towards specific impairments in neurons from Parkinson's patients, within the context of genetic predispositions. Despite the heterogeneous nature of the disease, current iPSC models reveal converging molecular pathways underlying neurodegeneration in a range of familial and sporadic forms of Parkinson's disease. Altogether, consolidating our understanding of robust cellular phenotypes across genetic cohorts of Parkinson's patients may guide future personalized drug screens in preclinical research.

15.
J Biol Chem ; 295(29): 9855-9867, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32430400

RESUMO

Fluorizoline (FLZ) binds to prohibitin-1 and -2 (PHB1/2), which are pleiotropic scaffold proteins known to affect signaling pathways involved in several intracellular processes. However, it is not yet clear how FLZ exerts its effect. Here, we show that exposure of three different human cancer cell lines to FLZ increases the phosphorylation of key translation factors, particularly of initiation factor 2 (eIF2) and elongation factor 2 (eEF2), modifications that inhibit their activities. FLZ also impaired signaling through mTOR complex 1, which also regulates the translational machinery, e.g. through the eIF4E-binding protein 4E-BP1. In line with these findings, FLZ potently inhibited protein synthesis. We noted that the first phase of this inhibition involves very rapid eEF2 phosphorylation, which is catalyzed by a dedicated Ca2+-dependent protein kinase, eEF2 kinase (eEF2K). We also demonstrate that FLZ induces a swift and marked rise in intracellular Ca2+ levels, likely explaining the effects on eEF2. Disruption of normal Ca2+ homeostasis can also induce endoplasmic reticulum stress, and our results suggest that induction of this stress response contributes to the increased phosphorylation of eIF2, likely because of activation of the eIF2-modifying kinase PKR-like endoplasmic reticulum kinase (PERK). We show that FLZ induces cancer cell death and that this effect involves contributions from the phosphorylation of both eEF2 and eIF2. Our findings provide important new insights into the biological effects of FLZ and thus the roles of PHBs, specifically in regulating Ca2+ levels, cellular protein synthesis, and cell survival.


Assuntos
Cálcio/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Neoplasias/biossíntese , Neoplasias/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Células A549 , Fator de Iniciação 2 em Eucariotos/metabolismo , Células HEK293 , Células HeLa , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fator 2 de Elongação de Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Proibitinas , Inibidores da Síntese de Proteínas/química , Proteínas Repressoras/metabolismo
16.
J Neurosci Methods ; 325: 108350, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31310823

RESUMO

Advances in human cell reprogramming and induced pluripotent stem cell technologies generate tremendous potential for neuroscience studies in health and disease, while the neuroscientist toolbox for engineering a range of brain tissues and neuronal cell types is rapidly expanding. Here, we discuss how the emergence of new single-cell genomics methods may help benchmarking and optimizing the tissue engineering process. The inherent heterogeneity and variability of reprogrammed brain tissue may conceal important disease mechanisms if not accounted for by rigorous experimental design. Single-cell genomics methods may address this technical challenge and ultimately improve the development of new therapeutics for neurological and psychiatric disorders.


Assuntos
Perfilação da Expressão Gênica , Genômica , Células-Tronco Pluripotentes Induzidas , Modelos Biológicos , Neurônios , Neurociências/métodos , Organoides , Humanos
18.
Front Mol Neurosci ; 11: 261, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147644

RESUMO

The human brain is composed of a complex assembly of about 171 billion heterogeneous cellular units (86 billion neurons and 85 billion non-neuronal glia cells). A comprehensive description of brain cells is necessary to understand the nervous system in health and disease. Recently, advances in genomics have permitted the accurate analysis of the full transcriptome of single cells (scRNA-seq). We have built upon such technical progress to combine scRNA-seq with patch-clamping electrophysiological recording and morphological analysis of single human neurons in vitro. This new powerful method, referred to as Patch-seq, enables a thorough, multimodal profiling of neurons and permits us to expose the links between functional properties, morphology, and gene expression. Here, we present a detailed Patch-seq protocol for isolating single neurons from in vitro neuronal cultures. We have validated the Patch-seq whole-transcriptome profiling method with human neurons generated from embryonic and induced pluripotent stem cells (ESCs/iPSCs) derived from healthy subjects, but the procedure may be applied to any kind of cell type in vitro. Patch-seq may be used on neurons in vitro to profile cell types and states in depth to unravel the human molecular basis of neuronal diversity and investigate the cellular mechanisms underlying brain disorders.

19.
Cell Stem Cell ; 22(5): 684-697.e9, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727680

RESUMO

Despite widespread interest in using human induced pluripotent stem cells (hiPSCs) in neurological disease modeling, a suitable model system to study human neuronal connectivity is lacking. Here, we report a comprehensive and efficient differentiation paradigm for hiPSCs that generate multiple CA3 pyramidal neuron subtypes as detected by single-cell RNA sequencing (RNA-seq). This differentiation paradigm exhibits characteristics of neuronal network maturation, and rabies virus tracing revealed synaptic connections between stem cell-derived dentate gyrus (DG) and CA3 neurons in vitro recapitulating the neuronal connectivity within the hippocampus. Because hippocampal dysfunction has been implicated in schizophrenia, we applied DG and CA3 differentiation paradigms to schizophrenia-patient-derived hiPSCs. We detected reduced activity in DG-CA3 co-culture and deficits in spontaneous and evoked activity in CA3 neurons from schizophrenia-patient-derived hiPSCs. Our approach offers critical insights into the network activity aspects of schizophrenia and may serve as a promising tool for modeling diseases with hippocampal vulnerability. VIDEO ABSTRACT.


Assuntos
Hipocampo/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios/patologia , Adulto , Animais , Diferenciação Celular , Giro Denteado/metabolismo , Giro Denteado/patologia , Feminino , Hipocampo/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Neurônios/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Adulto Jovem
20.
Sci Transl Med ; 10(440)2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743351

RESUMO

The use of autologous (or syngeneic) cells derived from induced pluripotent stem cells (iPSCs) holds great promise for future clinical use in a wide range of diseases and injuries. It is expected that cell replacement therapies using autologous cells would forego the need for immunosuppression, otherwise required in allogeneic transplantations. However, recent studies have shown the unexpected immune rejection of undifferentiated autologous mouse iPSCs after transplantation. Whether similar immunogenic properties are maintained in iPSC-derived lineage-committed cells (such as neural precursors) is relatively unknown. We demonstrate that syngeneic porcine iPSC-derived neural precursor cell (NPC) transplantation to the spinal cord in the absence of immunosuppression is associated with long-term survival and neuronal and glial differentiation. No tumor formation was noted. Similar cell engraftment and differentiation were shown in spinally injured transiently immunosuppressed swine leukocyte antigen (SLA)-mismatched allogeneic pigs. These data demonstrate that iPSC-NPCs can be grafted into syngeneic recipients in the absence of immunosuppression and that temporary immunosuppression is sufficient to induce long-term immune tolerance after NPC engraftment into spinally injured allogeneic recipients. Collectively, our results show that iPSC-NPCs represent an alternative source of transplantable NPCs for the treatment of a variety of disorders affecting the spinal cord, including trauma, ischemia, or amyotrophic lateral sclerosis.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/transplante , Medula Espinal/transplante , Envelhecimento , Animais , Diferenciação Celular , Reprogramação Celular , Doença Crônica , Fibroblastos/citologia , Regulação da Expressão Gênica , Tolerância Imunológica , Imunidade Humoral , Terapia de Imunossupressão , Neostriado/patologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Ratos , Pele/citologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Análise de Sobrevida , Suínos , Porco Miniatura , Transplante Homólogo , Transplante Isogênico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...