Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 31(4): 696-706.e9, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33275893

RESUMO

The actin cortex is involved in many biological processes and needs to be significantly remodeled during cell differentiation. Developing epithelial cells construct a dense apical actin cortex to carry out their barrier and exchange functions. The apical cortex assembles in response to three-dimensional (3D) extracellular cues, but the regulation of this process during epithelial morphogenesis remains unknown. Here, we describe the function of Smoothelin-like 2 (SMTNL2), a member of the smooth-muscle-related Smoothelin protein family, in apical cortex maturation. SMTNL2 is induced during development in multiple epithelial tissues and localizes to the apical and junctional actin cortex in intestinal and kidney epithelial cells. SMTNL2 deficiency leads to membrane herniations in the apical domain of epithelial cells, indicative of cortex abnormalities. We find that SMTNL2 binds to actin filaments and is required to slow down the turnover of apical actin. We also characterize the SMTNL2 proximal interactome and find that SMTNL2 executes its functions partly through inhibition of coronin-1B. Although coronin-1B-mediated actin dynamics are required for early morphogenesis, its sustained activity is detrimental for the mature apical shape. SMTNL2 binds to coronin-1B through its N-terminal coiled-coil region and negates its function to stabilize the apical cortex. In sum, our results unveil a mechanism for regulating actin dynamics during epithelial morphogenesis, providing critical insights on the developmental control of the cellular cortex.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas dos Microfilamentos/antagonistas & inibidores , Morfogênese , Fosfoproteínas/metabolismo , Animais , Cães , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio , Feminino , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Peixe-Zebra
2.
Nat Plants ; 6(11): 1330-1334, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32989288

RESUMO

Assessing cell proliferation dynamics is crucial to understand the spatiotemporal control of organogenesis. Here we have generated a versatile fluorescent sensor, PlaCCI (plant cell cycle indicator) on the basis of the expression of CDT1a-CFP, H3.1-mCherry and CYCB1;1-YFP, that identifies cell cycle phases in Arabidopsis thaliana. This tool works in a variety of organs, and all markers and the antibiotic resistance are expressed from a single cassette, facilitating the selection in mutant backgrounds. We also show the robustness of PlaCCI line in live-imaging experiments to follow and quantify cell cycle phase progression.


Assuntos
Arabidopsis/metabolismo , Ciclo Celular , Tamanho Celular , Clonagem Molecular , Citometria de Fluxo , Fluorescência , Meristema/fisiologia , Microscopia Confocal , Folhas de Planta/citologia , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Análise Espaço-Temporal
3.
Biomaterials ; 218: 119339, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31326655

RESUMO

Tubulogenesis in epithelial organs often initiates with the acquisition of apicobasal polarity, giving rise to the formation of small lumens that expand and fuse to generate a single opened cavity. In this study, we present a micropattern-based device engineered to generate epithelial tubes through a process that recapitulates in vivo tubule morphogenesis. Interestingly, tubulogenesis in this device is dependent on microenvironmental cues such as cell confinement, extracellular matrix composition, and substrate stiffness, and our set-up specifically allows the control of these extracellular conditions. Additionally, proximal tubule cell lines growing on micropatterns express higher levels of drug transporters and are more sensitive to nephrotoxicity. These tubes display specific morphological defects that can be linked to nephrotoxicity, which would be helpful to predict potential toxicity when developing new compounds. This device, with the ability to recapitulate tube formation in vitro, has emerged as a powerful tool to study the molecular mechanisms involved in organogenesis and, by being more physiologically relevant than existing cellular models, becomes an innovative platform to conduct drug discovery assays.


Assuntos
Túbulos Renais/citologia , Morfogênese/fisiologia , Animais , Adesão Celular/fisiologia , Divisão Celular/fisiologia , Linhagem Celular , Polaridade Celular/fisiologia , Proliferação de Células/fisiologia , Cães , Imunofluorescência , Microscopia Confocal
4.
Nat Commun ; 10(1): 2481, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171792

RESUMO

Mammary stroma is essential for epithelial morphogenesis and development. Indeed, postnatal mammary gland (MG) development is controlled locally by the repetitive and bi-directional cross-talk between the epithelial and the stromal compartment. However, the signalling pathways involved in stromal-epithelial communication are not entirely understood. Here, we identify Sfrp3 as a mediator of the stromal-epithelial communication that is required for normal mouse MG development. Using Drosophila wing imaginal disc, we demonstrate that Sfrp3 functions as an extracellular transporter of Wnts that facilitates their diffusion, and thus, their levels in the boundaries of different compartments. Indeed, loss of Sfrp3 in mice leads to an increase of ductal invasion and branching mirroring an early pregnancy state. Finally, we observe that loss of Sfrp3 predisposes for invasive breast cancer. Altogether, our study shows that Sfrp3 controls MG morphogenesis by modulating the stromal-epithelial cross-talk during pubertal development.


Assuntos
Comunicação Celular/genética , Células Epiteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Glândulas Mamárias Animais/crescimento & desenvolvimento , Neoplasias Mamárias Animais/genética , Células Estromais/metabolismo , Proteínas Wnt/metabolismo , Animais , Drosophila , Proteínas de Drosophila , Feminino , Discos Imaginais , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Knockout , Morfogênese , Gravidez , Maturidade Sexual , Fatores de Transcrição , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA