Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731723

RESUMO

The intensity of the odor in food-grade paraffin waxes is a pivotal quality characteristic, with odor panel ratings currently serving as the primary criterion for its assessment. This study presents an innovative method for assessing odor intensity in food-grade paraffin waxes, employing headspace gas chromatography with mass spectrometry (HS/GC-MS) and integrating total ion spectra with advanced machine learning (ML) algorithms for enhanced detection and quantification. Optimization was conducted using Box-Behnken design and response surface methodology, ensuring precision with coefficients of variance below 9%. Analytical techniques, including hierarchical cluster analysis (HCA) and principal component analysis (PCA), efficiently categorized samples by odor intensity. The Gaussian support vector machine (SVM), random forest, partial least squares regression, and support vector regression (SVR) algorithms were evaluated for their efficacy in odor grade classification and quantification. Gaussian SVM emerged as superior in classification tasks, achieving 100% accuracy, while Gaussian SVR excelled in quantifying odor levels, with a coefficient of determination (R2) of 0.9667 and a root mean square error (RMSE) of 6.789. This approach offers a fast, reliable, robust, objective, and reproducible alternative to the current ASTM sensory panel assessments, leveraging the analytical capabilities of HS-GC/MS and the predictive power of ML for quality control in the petrochemical sector's food-grade paraffin waxes.

2.
Food Chem ; 449: 139212, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583399

RESUMO

The rising demand for cocoa powder has resulted in an upsurge in market prices, leading to the emergence of adulteration practices aimed at achieving economic benefits. This study aimed to detect and quantify cocoa powder adulteration using visible and near-infrared spectroscopy (Vis-NIRS). The adulterants used in this study were powdered carob, cocoa shell, foxtail millet, soybean, and whole wheat. The NIRS data could not be resolved using Savitzky-Golay smoothing. Nevertheless, the application of a random forest and support vector machine successfully classified the samples with 100% accuracy. Quantification of adulteration using partial least squares (PLS), Lasso, Ridge, elastic Net, and RF regressions provided R2 higher than 0.96 and root mean square error <2.6. Coupling PLS with the Boruta algorithm produced the most reliable regression model (R2 = 1, RMSE = 0.0000). Finally, an online application was prepared to facilitate the determination of adulterants in the cocoa powder.


Assuntos
Cacau , Contaminação de Alimentos , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Cacau/química , Contaminação de Alimentos/análise , Pós/química , Quimiometria/métodos
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123910, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38244432

RESUMO

Petroleum waxes are products derived from lubricating oils with a wide spectrum of industrial and consumer applications that depend on their composition. In addition, the intended applications of this product are also subject to the practice of blending petroleum waxes with different chemical characteristics (e.g., paraffin waxes and microwaxes) to achieve the appropriate physicochemical properties. This study introduces a novel method based on visible and near-infrared spectroscopy (Vis-NIR) combined with machine learning (ML) for the characterization of blends of the two types of commonly marketed petroleum waxes (paraffin waxes and microwaxes). With spectroscopic data, Partial Least Squared Regression (PLSR), Support Vector Regression (SVR), and Random Forest (RF) Regression-based regression ML models have been developed, obtaining satisfactory results for the characterization of the percentage of blending in petroleum waxes. Moreover, strategies using wrapper variable selection methods like the Boruta algorithm and Genetic Algorithm (GA) have been implemented to assess if fewer predictors enhance model performance. Particularly, the application of wrapper variable selection methods, specifically the Boruta algorithm, has led to an improvement in the performance of the models obtained. Results obtained by the Boruta-PLS model showed the best performance with an RMSE of 2.972 and an R2 of 0.9925 for the test set and an RMSE of 1.814 and an R2 of 0.9977 for the external validation set. Additionally, this model allowed for establishing the relative importance of the variables in the characterization of the waxes mixture, pointing out that the hydrocarbon content ratio is critical in the determination of this value. An interactive web application was developed using the best model developed for easy processing of the data by the users.

4.
Foods ; 12(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37761070

RESUMO

Petroleum-derived waxes are used in the food industry as additives to provide texture and as coatings for foodstuffs such as fruits and cheeses. Therefore, food waxes are subject to strict quality controls to comply with regulations. In this research, a combination of visible and near-infrared (Vis-NIR) spectroscopy with machine learning was employed to effectively characterize two commonly marketed petroleum waxes of food interest: macrocrystalline and microcrystalline. The present study employed unsupervised machine learning algorithms like hierarchical cluster analysis (HCA) and principal component analysis (PCA) to differentiate the wax samples based on their chemical composition. Furthermore, nonparametric supervised machine learning algorithms, such as support vector machines (SVMs) and random forest (RF), were applied to the spectroscopic data for precise classification. Results from the HCA and PCA demonstrated a clear trend of grouping the wax samples according to their chemical composition. In combination with five-fold cross-validation (CV), the SVM models accurately classified all samples as either macrocrystalline or microcrystalline wax during the test phase. Similar high-performance outcomes were observed with RF models along with five-fold CV, enabling the identification of specific wavelengths that facilitate discrimination between the wax types, which also made it possible to select the wavelengths that allow discrimination of the samples to build the characteristic spectralprint of each type of petroleum wax. This research underscores the effectiveness of the proposed analytical method in providing fast, environmentally friendly, and cost-effective quality control for waxes. The approach offers a promising alternative to existing techniques, making it a viable option for automated quality assessment of waxes in food industrial applications.

5.
Foods ; 12(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37444273

RESUMO

Fruit juices are one of the most widely consumed beverages worldwide, and their production is subject to strict regulations. Therefore, this study presents a methodology based on the use of headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) in combination with machine-learning algorithms for the characterization juices of different raw material (orange, pineapple, or apple and grape). For this purpose, the ion mobility sum spectrum (IMSS) was used. First, an optimization of the most important conditions in generating the HS was carried out using a Box-Behnken design coupled with a response surface methodology. The following factors were studied: temperature, time, and sample volume. The optimum values were 46.3 °C, 5 min, and 750 µL, respectively. Once the conditions were optimized, 76 samples of the different types of juices were analyzed and the IMSS was combined with different machine-learning algorithms for its characterization. The exploratory analysis by hierarchical cluster analysis (HCA) and principal component analysis (PCA) revealed a clear tendency to group the samples according to the type of fruit juice and, to a lesser extent, the commercial brand. The combination of IMSS with supervised classification techniques reported an excellent result with 100% accuracy on the test set for support vector machines (SVM) and random forest (RF) models regarding the specific fruit used. Nevertheless, all the models have proven to be an effective alternative for characterizing and classifying the different types of juices.

6.
J Fungi (Basel) ; 8(12)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36547625

RESUMO

Mushroom consumption has increased in recent years due to their beneficial properties to the proper functioning of the body. Within this framework, the high potential of mushrooms as a source of essential elements has been reported. Therefore, the present study aims to determine the mineral content of seven essential metals, Fe, Mg, Mn, P, K, Ca, and Na, in twenty samples of mushrooms of the genus Lactarius collected from various locations in southern Spain and northern Morocco, by FAAS, UV-Vis spectroscopy, and ICP-OES after acid digestion. Statistics showed that K was the macronutrient found at the highest levels in all mushrooms studied. ANOVA showed that there were statistically significant differences among the species for K, P, and Na. The multivariate study suggested that there were differences between the accumulation of the elements according to the geographic location and species. Furthermore, the intake of 300 g of fresh mushrooms of each sample covers a high percentage of the RDI, but does not meet the recommended daily intake (RDI) for any of the metals studied, except for Fe. Even considering these benefits, the consumption of mushrooms should be moderated due to the presence of toxic metals, which may pose health risks.

7.
Sensors (Basel) ; 22(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35632260

RESUMO

Fruit juice production is one of the most important sectors in the beverage industry, and its adulteration by adding cheaper juices is very common. This study presents a methodology based on the combination of machine learning models and near-infrared spectroscopy for the detection and quantification of juice-to-juice adulteration. We evaluated 100% squeezed apple, pineapple, and orange juices, which were adulterated with grape juice at different percentages (5%, 10%, 15%, 20%, 30%, 40%, and 50%). The spectroscopic data have been combined with different machine learning tools to develop predictive models for the control of the juice quality. The use of non-supervised techniques, specifically model-based clustering, revealed a grouping trend of the samples depending on the type of juice. The use of supervised techniques such as random forest and linear discriminant analysis models has allowed for the detection of the adulterated samples with an accuracy of 98% in the test set. In addition, a Boruta algorithm was applied which selected 89 variables as significant for adulterant quantification, and support vector regression achieved a regression coefficient of 0.989 and a root mean squared error of 1.683 in the test set. These results show the suitability of the machine learning tools combined with spectroscopic data as a screening method for the quality control of fruit juices. In addition, a prototype application has been developed to share the models with other users and facilitate the detection and quantification of adulteration in juices.


Assuntos
Qualidade dos Alimentos , Sucos de Frutas e Vegetais , Controle de Qualidade , Sucos de Frutas e Vegetais/análise , Sucos de Frutas e Vegetais/normas , Humanos , Aprendizado de Máquina , Espectroscopia de Luz Próxima ao Infravermelho
8.
J Fungi (Basel) ; 8(5)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35628800

RESUMO

The demand and interest in mushrooms, both cultivated and wild, has increased among consumers in recent years due to a better understanding of the benefits of this food. However, the ability of wild edible mushrooms to accumulate essential and toxic elements is well documented. In this study, a total of eight metallic elements and metalloids (chromium (Cr), arsenic (As), cadmium (Cd), mercury (Hg), lead (Pb), copper (Cu), zinc (Zn), and selenium (Se)) were determined by ICP-MS in five wild edible mushroom species (Agaricus silvicola, Amanita caesarea, Boletus aereus, Boletus edulis, and Russula cyanoxantha) collected in southern Spain and northern Morocco. Overall, Zn was found to be the predominant element among the studied species, followed by Cu and Se. The multivariate analysis suggested that considerable differences exist in the uptake of the essential and toxic elements determined, linked to species-intrinsic factors. Furthermore, the highest Estimated Daily Intake of Metals (EDIM) values obtained were observed for Zn. The Health Risk Index (HRI) assessment for all the mushroom species studied showed a Hg-related cause of concern due to the frequent consumption of around 300 g of fresh mushrooms per day during the mushrooming season.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA