Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 22291, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785727

RESUMO

Methane, a potent greenhouse gas, is the main component of natural gas. Previous research has identified considerable methane emissions associated with oil and gas production, but estimates of emission trends have been inconsistent, in part due to limited in-situ methane observations spanning multiple years in oil/gas production regions. Here we present a unique analysis of one of the longest-running datasets of in-situ methane observations from an oil/gas production region in Utah's Uinta Basin. The observations indicate Uinta methane emissions approximately halved between 2015 and 2020, along with declining gas production. As a percentage of gas production, however, emissions remained steady over the same years, at ~ 6-8%, among the highest in the U.S. Addressing methane leaks and recovering more of the economically valuable natural gas is critical, as the U.S. seeks to address climate change through aggressive greenhouse emission reductions.

2.
Environ Res ; 201: 111471, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34102162

RESUMO

Urban air quality is a growing concern due a range of social, economic, and health impacts. Since the SARS-CoV-19 pandemic began in 2020, governments have produced a range of non-medical interventions (NMIs) (e.g. lockdowns, stay-at-home orders, mask mandates) to prevent the spread of COVID-19. A co-benefit of NMI implementation has been the measurable improvement in air quality in cities around the world. Using the lockdown policy of the COVID-19 pandemic as a natural experiment, we traced the changing emissions patterns produced under the pandemic in a mid-sized, high-altitude city to isolate the effects of human behavior on air pollution. We tracked air pollution over time periods reflecting the Pre-Lockdown, Lockdown, and Reopening stages, using high quality, research grade sensors in both commercial and residential areas to better understand how each setting may be uniquely impacted by pollution downturn events. Based on this approach, we found the commercial area of the city showed a greater decrease in air pollution than residential areas during the lockdown period, while both areas experienced a similar rebound post lockdown. The easing period following the lockdown did not lead to an immediate rebound in human activity and the air pollution increase associated with reopening, took place nearly two months after the lockdown period ended. We hypothesize that differences in heating needs, travel demands, and commercial activity, are responsible for the corresponding observed changes in the spatial distribution of pollutants over the study period. This research has implications for climate policy, low-carbon energy transitions, and may even impact local policy due to changing patterns in human exposure that could lead to important public health outcomes, if left unaddressed.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Pandemias , Material Particulado/análise , SARS-CoV-2 , Utah
3.
Environ Sci Technol ; 54(24): 15613-15621, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33274635

RESUMO

Urban environments are characterized by pronounced spatiotemporal heterogeneity, which can present sampling challenges when utilizing conventional greenhouse gas (GHG) measurement systems. In Salt Lake City, Utah, a GHG instrument was deployed on a light rail train car that continuously traverses the Salt Lake Valley (SLV) through a range of urban typologies. CO2 measurements from a light rail train car were used within a Bayesian inverse modeling framework to constrain urban emissions across the SLV during the fall of 2015. The primary objectives of this study were to (1) evaluate whether ground-based mobile measurements could be used to constrain urban emissions using an inverse modeling framework and (2) quantify the information that mobile observations provided relative to conventional GHG monitoring networks. Preliminary results suggest that ingesting mobile measurements into an inverse modeling framework generated a posterior emission estimate that more closely aligned with observations, reduced posterior emission uncertainties, and extends the geographical extent of emission adjustments.


Assuntos
Gases de Efeito Estufa , Teorema de Bayes , Cidades , Efeito Estufa , Gases de Efeito Estufa/análise , Lagos , Utah
4.
Proc Natl Acad Sci U S A ; 115(12): 2912-2917, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507190

RESUMO

Cities are concentrated areas of CO2 emissions and have become the foci of policies for mitigation actions. However, atmospheric measurement networks suitable for evaluating urban emissions over time are scarce. Here we present a unique long-term (decadal) record of CO2 mole fractions from five sites across Utah's metropolitan Salt Lake Valley. We examine "excess" CO2 above background conditions resulting from local emissions and meteorological conditions. We ascribe CO2 trends to changes in emissions, since we did not find long-term trends in atmospheric mixing proxies. Three contrasting CO2 trends emerged across urban types: negative trends at a residential-industrial site, positive trends at a site surrounded by rapid suburban growth, and relatively constant CO2 over time at multiple sites in the established, residential, and commercial urban core. Analysis of population within the atmospheric footprints of the different sites reveals approximately equal increases in population influencing the observed CO2, implying a nonlinear relationship with CO2 emissions: Population growth in rural areas that experienced suburban development was associated with increasing emissions while population growth in the developed urban core was associated with stable emissions. Four state-of-the-art global-scale emission inventories also have a nonlinear relationship with population density across the city; however, in contrast to our observations, they all have nearly constant emissions over time. Our results indicate that decadal scale changes in urban CO2 emissions are detectable through monitoring networks and constitute a valuable approach to evaluate emission inventories and studies of urban carbon cycles.

5.
Environ Sci Technol ; 51(11): 5941-5950, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28468492

RESUMO

The Salt Lake Valley experiences severe fine particulate matter pollution episodes in winter during persistent cold-air pools (PCAPs). We employ measurements throughout an entire winter from different elevations to examine the chemical and dynamical processes driving these episodes. Whereas primary pollutants such as NOx and CO were enhanced twofold during PCAPs, O3 concentrations were approximately threefold lower. Atmospheric composition varies strongly with altitude within a PCAP at night with lower NOx and higher oxidants (O3) and oxidized reactive nitrogen (N2O5) aloft. We present observations of N2O5 during PCAPs that provide evidence for its role in cold-pool nitrate formation. Our observations suggest that nighttime and early morning chemistry in the upper levels of a PCAP plays an important role in aerosol nitrate formation. Subsequent daytime mixing enhances surface PM2.5 by dispersing the aerosol throughout the PCAP. As pollutants accumulate and deplete oxidants, nitrate chemistry becomes less active during the later stages of the pollution episodes. This leads to distinct stages of PM2.5 pollution episodes, starting with a period of PM2.5 buildup and followed by a period with plateauing concentrations. We discuss the implications of these findings for mitigation strategies.


Assuntos
Poluentes Atmosféricos , Material Particulado , Temperatura Baixa , Monitoramento Ambiental , Lagos , Utah
6.
Proc Natl Acad Sci U S A ; 112(11): 3247-52, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25733906

RESUMO

Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...