Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 43(11): 4196-4202, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33493111

RESUMO

In state-of-the-art deep single-label classification models, the top- k (k=2,3,4, ...) accuracy is usually significantly higher than the top-1 accuracy. This is more evident in fine-grained datasets, where differences between classes are quite subtle. Exploiting the information provided in the top k predicted classes boosts the final prediction of a model. We propose Guided Zoom, a novel way in which explainability could be used to improve model performance. We do so by making sure the model has "the right reasons" for a prediction. The reason/evidence upon which a deep neural network makes a prediction is defined to be the grounding, in the pixel space, for a specific class conditional probability in the model output. Guided Zoom examines how reasonable the evidence used to make each of the top- k predictions is. Test time evidence is deemed reasonable if it is coherent with evidence used to make similar correct decisions at training time. This leads to better informed predictions. We explore a variety of grounding techniques and study their complementarity for computing evidence. We show that Guided Zoom results in an improvement of a model's classification accuracy and achieves state-of-the-art classification performance on four fine-grained classification datasets. Our code is available at https://github.com/andreazuna89/Guided-Zoom.

2.
IEEE Trans Pattern Anal Mach Intell ; 42(2): 502-508, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30802849

RESUMO

We present the Moments in Time Dataset, a large-scale human-annotated collection of one million short videos corresponding to dynamic events unfolding within three seconds. Modeling the spatial-audio-temporal dynamics even for actions occurring in 3 second videos poses many challenges: meaningful events do not include only people, but also objects, animals, and natural phenomena; visual and auditory events can be symmetrical in time ("opening" is "closing" in reverse), and either transient or sustained. We describe the annotation process of our dataset (each video is tagged with one action or activity label among 339 different classes), analyze its scale and diversity in comparison to other large-scale video datasets for action recognition, and report results of several baseline models addressing separately, and jointly, three modalities: spatial, temporal and auditory. The Moments in Time dataset, designed to have a large coverage and diversity of events in both visual and auditory modalities, can serve as a new challenge to develop models that scale to the level of complexity and abstract reasoning that a human processes on a daily basis.


Assuntos
Bases de Dados Factuais , Gravação em Vídeo , Animais , Atividades Humanas/classificação , Humanos , Processamento de Imagem Assistida por Computador , Reconhecimento Automatizado de Padrão
3.
IEEE Trans Pattern Anal Mach Intell ; 41(10): 2424-2437, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31059428

RESUMO

Binary vector embeddings enable fast nearest neighbor retrieval in large databases of high-dimensional objects, and play an important role in many practical applications, such as image and video retrieval. We study the problem of learning binary vector embeddings under a supervised setting, also known as hashing. We propose a novel supervised hashing method based on optimizing an information-theoretic quantity, mutual information. We show that optimizing mutual information can reduce ambiguity in the induced neighborhood structure in the learned Hamming space, which is essential in obtaining high retrieval performance. To this end, we optimize mutual information in deep neural networks with minibatch stochastic gradient descent, with a formulation that maximally and efficiently utilizes available supervision. Experiments on four image retrieval benchmarks, including ImageNet, confirm the effectiveness of our method in learning high-quality binary embeddings for nearest neighbor retrieval.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...