Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(24)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371208

RESUMO

Inflammation is a common feature of several diseases, including obesity, diabetes and neurodegenerative disorders. Circadian clock genes are expressed and oscillate in many cell types such as macrophages, neurons and pancreatic ß cells. During inflammation, these endogenous clocks control the temporal gating of cytokine production, the antioxidant response, chemokine attraction and insulin secretion, among other processes. Deletion of clock genes in macrophages or brain-resident cells induces a higher production of inflammatory cytokines and chemokines, and this is often accompanied by an increased oxidative stress. In the context of obesity and diabetes, a high-fat diet disrupts the function of clock genes in macrophages and in pancreatic ß cells, contributing to inflammation and systemic insulin resistance. Recently, it has been shown that the administration of natural and synthetic ligands or pharmacological enhancers of the circadian clock function can selectively regulate the production and release of pro-inflammatory cytokines and improve the metabolic function in vitro and in vivo. Thus, a better understanding of the circadian regulation of the immune system could have important implications for the management of metabolic and neurodegenerative diseases.


Assuntos
Proteínas CLOCK/genética , Relógios Circadianos , Diabetes Mellitus/patologia , Sistema Imunitário/imunologia , Inflamação/imunologia , Doenças Neurodegenerativas/patologia , Obesidade/patologia , Animais , Diabetes Mellitus/etiologia , Humanos , Inflamação/fisiopatologia , Doenças Neurodegenerativas/etiologia , Obesidade/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA