Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 209: 117938, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34910992

RESUMO

Cyclodextrin polymers (CDPs) are emerging adsorbents with demonstrated potential to remove perfluoroalkyl acids (PFAAs) from water. However, little is known about how the physicochemical properties of different types of CDPs determine PFAA adsorption on CDPs. In this study, we investigated the adsorption performance of 34 CDPs which consist of 14 different crosslinkers and exhibit a wide range of physicochemical properties. The performance metrics included adsorption kinetics, equilibrium adsorption density, and adsorption affinity for six PFAAs. We then used complementary bivariate and multivariate analyses to discover relationships between sixteen measurable physicochemical properties of the CDPs and their performance as adsorbents. We found that: (1) CDPs with a less negative or more positive surface charge will exhibit enhanced adsorption of all types of PFAAs; (2) CDPs with greater porosity and surface area will exhibit enhanced adsorption kinetics for all types of PFAAs; (3) CDPs with greater crosslinker content will exhibit enhanced adsorption of short-chain PFAAs; (4) CDPs containing more hydrophobic crosslinkers will exhibit enhanced equilibrium adsorption density and adsorption affinity for longer-chain PFAAs; and (5) CDPs with smaller particle sizes will exhibit enhanced adsorption kinetics and equilibrium adsorption density for all PFAAs. These insights will enable the further development of CDPs and other novel adsorbents to optimize their performance for removing PFAAs during water and wastewater treatment or groundwater remediation.

2.
ACS Appl Mater Interfaces ; 12(52): 58161-58169, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33326228

RESUMO

The fascinating structural flexibility of porous polymers is highly attractive because it can result in optimized materials with specific host-guest interactions. Nevertheless, the fundamental mechanisms responsible for controlling the weak interactions of these hydrogen bond-rich networks-essential for developing smart task-specific materials used in recognition, capture, and sequestration processes-remain unexplored. Herein, by systematically comparing performance changes between poly(amic acid) (PAA)- and polycyclic imide (PI)-based porous polymers before and after NH3 adsorption, the role of hydrogen bonds in conformational lability and responsiveness toward guest molecules is highlighted. By combining thermal gravimetric analysis with neutron spectroscopy supported by DFT calculations, we demonstrate that PAA's chemical and physical stability is enhanced by the presence of stronger host-guest interactions. This observation also emphasizes the idea that efficient adsorption relies on having a high number of sites, upon which gas molecules can adsorb with greater affinity via strong hydrogen bonding interactions.

3.
J Am Chem Soc ; 140(9): 3412-3422, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29446932

RESUMO

Purification of the C8 alkylaromatics o-xylene, m-xylene, p-xylene, and ethylbenzene remains among the most challenging industrial separations, due to the similar shapes, boiling points, and polarities of these molecules. Herein, we report the evaluation of the metal-organic frameworks Co2(dobdc) (dobdc4- = 2,5-dioxido-1,4-benzenedicarboxylate) and Co2( m-dobdc) ( m-dobdc4- = 4,6-dioxido-1,3-benzenedicarboxylate) for the separation of xylene isomers using single-component adsorption isotherms and multicomponent breakthrough measurements. Remarkably, Co2(dobdc) distinguishes among all four molecules, with binding affinities that follow the trend o-xylene > ethylbenzene > m-xylene > p-xylene. Multicomponent liquid-phase adsorption measurements further demonstrate that Co2(dobdc) maintains this selectivity over a wide range of concentrations. Structural characterization by single-crystal X-ray diffraction reveals that both frameworks facilitate the separation through the extent of interaction between each C8 guest molecule with two adjacent cobalt(II) centers, as well as the ability of each isomer to pack within the framework pores. Moreover, counter to the presumed rigidity of the M2(dobdc) structure, Co2(dobdc) exhibits an unexpected structural distortion in the presence of either o-xylene or ethylbenzene that enables the accommodation of additional guest molecules.


Assuntos
Cobalto/química , Estruturas Metalorgânicas/química , Ácidos Ftálicos/química , Xilenos/isolamento & purificação , Adsorção , Isomerismo , Modelos Moleculares
4.
ACS Appl Mater Interfaces ; 9(39): 33504-33510, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28388032

RESUMO

Amic acids, consisting of carboxylic acids and amides, are often utilized as intermediates that can further undergo a dehydration-cyclization step to yield polymeric cyclic imides. Compared with imide-based materials, the presence of Brønsted acidic groups and multiple hydrogen-bond donors and acceptors in materials incorporating amic acids opens up the possibility for a variety of host-guest interactions. Here we report a facile and catalyst-free synthesis of a Brønsted acidic porous poly(amic acid) (PAA) and present its NH3 uptake properties using gas adsorption and breakthrough measurements. Simple addition of water as a cosolvent to a mixture of tetrakis(4-aminophenyl)methane and pyromellitic anhydride resulted in the formation of PAA in almost quantitative yield. Further mechanistic studies with model compounds revealed the importance of additive water to generate amic acid species selectively without forming cyclic imides at high temperatures. Gas adsorption isotherms and breakthrough curves obtained under dry and humid conditions demonstrate the enhanced NH3 uptake in the case of PAA compared with the related polycyclic imide at both low and high pressures. Furthermore, the results of adsorption/desorption cycling experiments provide insights into the strength of the interaction between ammonia and the polymers.

5.
Chem Sci ; 8(6): 4399-4409, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30155218

RESUMO

Although a widely used and important industrial gas, ammonia (NH3) is also highly toxic and presents a substantial health and environmental hazard. The development of new materials for the effective capture and removal of ammonia is thus of significant interest. The capture of ammonia at ppm-level concentrations relies on strong interactions between the adsorbent and the gas, as demonstrated in a number of zeolites and metal-organic frameworks with Lewis acidic open metal sites. However, these adsorbents typically exhibit diminished capacity for ammonia in the presence of moisture due to competitive adsorption of water and/or reduced structural stability. In an effort to overcome these challenges, we are investigating the performance of porous polymers functionalized with Brønsted acidic groups, which should possess inherent structural stability and enhanced reactivity towards ammonia in the presence of moisture. Herein, we report the syntheses of six different Brønsted acidic porous polymers exhibiting -NH3Cl, -CO2H, -SO3H, and -PO3H2 groups and featuring two different network structures with respect to interpenetration. We further report the low- and high-pressure NH3 uptake in these materials, as determined under dry and humid conditions using gas adsorption and breakthrough measurements. Under dry conditions, it is possible to achieve NH3 capacities as high as 2 mmol g-1 at 0.05 mbar (50 ppm) equilibrium pressure, while breakthrough saturation capacities of greater than 7 mmol g-1 are attainable under humid conditions. Chemical and structural variations deduced from these measurements also revealed an important interplay between acidic group spatial arrangement and NH3 uptake, in particular that interpenetration can promote strong adsorption even for weaker Brønsted acidic functionalities. In situ infrared spectroscopy provided further insights into the mechanism of NH3 adsorption, revealing a proton transfer between ammonia and acidic sites as well as strong hydrogen bonding interactions in the case of the weaker carboxylic acid-functionalized polymer. These findings highlight that an increase of acidity or porosity does not necessarily correspond directly to increased NH3 capacity and advocate for the development of more fine-tuned design principles for efficient NH3 capture under a range of concentrations and conditions.

6.
J Am Chem Soc ; 138(24): 7603-9, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27285482

RESUMO

Copper is an essential nutrient for life, but at the same time, hyperaccumulation of this redox-active metal in biological fluids and tissues is a hallmark of pathologies such as Wilson's and Menkes diseases, various neurodegenerative diseases, and toxic environmental exposure. Diseases characterized by copper hyperaccumulation are currently challenging to identify due to costly diagnostic tools that involve extensive technical workup. Motivated to create simple yet highly selective and sensitive diagnostic tools, we have initiated a program to develop new materials that can enable monitoring of copper levels in biological fluid samples without complex and expensive instrumentation. Herein, we report the design, synthesis, and properties of PAF-1-SMe, a robust three-dimensional porous aromatic framework (PAF) densely functionalized with thioether groups for selective capture and concentration of copper from biofluids as well as aqueous samples. PAF-1-SMe exhibits a high selectivity for copper over other biologically relevant metals, with a saturation capacity reaching over 600 mg/g. Moreover, the combination of PAF-1-SMe as a material for capture and concentration of copper from biological samples with 8-hydroxyquinoline as a colorimetric indicator affords a method for identifying aberrant elevations of copper in urine samples from mice with Wilson's disease and also tracing exogenously added copper in serum. This divide-and-conquer sensing strategy, where functional and robust porous materials serve as molecular recognition elements that can be used to capture and concentrate analytes in conjunction with molecular indicators for signal readouts, establishes a valuable starting point for the use of porous polymeric materials in noninvasive diagnostic applications.


Assuntos
Cobre/urina , Degeneração Hepatolenticular/diagnóstico , Polímeros , Sulfetos , Animais , Modelos Animais de Doenças , Degeneração Hepatolenticular/urina , Camundongos , Estrutura Molecular , Polímeros/síntese química , Polímeros/química , Porosidade , Sensibilidade e Especificidade , Sulfetos/síntese química , Sulfetos/química
7.
J Am Chem Soc ; 137(34): 11057-68, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26237091

RESUMO

The modulation of noncovalent bonding interactions by redox processes is a central theme in the fundamental understanding of biological systems as well as being ripe for exploitation in supramolecular science. In the context of host-guest systems, we demonstrate in this article how the formation of inclusion complexes can be controlled by manipulating the redox potential of a cyclophane. The four-electron reduction of cyclobis(paraquat-p-phenylene) to its neutral form results in altering its binding properties while heralding a significant change in its stereoelectronic behavior. Quantum mechanics calculations provide the energetics for the formation of the inclusion complexes between the cyclophane in its various redox states with a variety of guest molecules, ranging from electron-poor to electron-rich. The electron-donating properties displayed by the cyclophane were investigated by probing the interaction of this host with electron-poor guests, and the formation of inclusion complexes was confirmed by single-crystal X-ray diffraction analysis. The dramatic change in the binding mode depending on the redox state of the cyclophane leads to (i) aromatic donor-acceptor interactions in its fully oxidized form and (ii) van der Waals interactions when the cyclophane is fully reduced. These findings lay the foundation for the potential use of this class of cyclophane in various arenas, all the way from molecular electronics to catalysis, by virtue of its electronic properties. The extension of the concept presented herein into the realm of mechanically interlocked molecules will lead to the investigation of novel structures with redox control being expressed over the relative geometries of their components.


Assuntos
Éteres Cíclicos/química , Paraquat/química , Piperidinas/química , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Oxirredução , Paraquat/análogos & derivados , Teoria Quântica
8.
J Am Chem Soc ; 137(17): 5706-19, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25806952

RESUMO

Metal-organic frameworks (MOFs) are known to facilitate energy-efficient separations of important industrial chemical feedstocks. Here, we report how a class of green MOFs-namely CD-MOFs-exhibits high shape selectivity toward aromatic hydrocarbons. CD-MOFs, which consist of an extended porous network of γ-cyclodextrins (γ-CDs) and alkali metal cations, can separate a wide range of benzenoid compounds as a result of their relative orientation and packing within the transverse channels formed from linking (γ-CD)6 body-centered cuboids in three dimensions. Adsorption isotherms and liquid-phase chromatographic measurements indicate a retention order of ortho- > meta- > para-xylene. The persistence of this regioselectivity is also observed during the liquid-phase chromatography of the ethyltoluene and cymene regioisomers. In addition, molecular shape-sorting within CD-MOFs facilitates the separation of the industrially relevant BTEX (benzene, toluene, ethylbenzene, and xylene isomers) mixture. The high resolution and large separation factors exhibited by CD-MOFs for benzene and these alkylaromatics provide an efficient, reliable, and green alternative to current isolation protocols. Furthermore, the isolation of the regioisomers of (i) ethyltoluene and (ii) cymene, together with the purification of (iii) cumene from its major impurities (benzene, n-propylbenzene, and diisopropylbenzene) highlight the specificity of the shape selectivity exhibited by CD-MOFs. Grand canonical Monte Carlo simulations and single component static vapor adsorption isotherms and kinetics reveal the origin of the shape selectivity and provide insight into the capability of CD-MOFs to serve as versatile separation platforms derived from renewable sources.

9.
J Am Chem Soc ; 136(31): 11011-26, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25010890

RESUMO

While mechanical bonding stabilizes tetrathiafulvalene (TTF) radical dimers, the question arises: what role does topology play in catenanes containing TTF units? Here, we report how topology, together with mechanical bonding, in isomeric [3]- and doubly interlocked [2]catenanes controls the formation of TTF radical dimers within their structural frameworks, including a ring-in-ring complex (formed between an organoplatinum square and a {2+2} macrocyclic polyether containing two 1,5-dioxynaphthalene (DNP) and two TTF units) that is topologically isomeric with the doubly interlocked [2]catenane. The separate TTF units in the two {1+1} macrocycles (each containing also one DNP unit) of the isomeric [3]catenane exhibit slightly different redox properties compared with those in the {2+2} macrocycle present in the [2]catenane, while comparison with its topological isomer reveals substantially different redox behavior. Although the stabilities of the mixed-valence (TTF2)(•+) dimers are similar in the two catenanes, the radical cationic (TTF(•+))2 dimer in the [2]catenane occurs only fleetingly compared with its prominent existence in the [3]catenane, while both dimers are absent altogether in the ring-in-ring complex. The electrochemical behavior of these three radically configurable isomers demonstrates that a fundamental relationship exists between topology and redox properties.


Assuntos
Dimerização , Compostos Heterocíclicos/química , Fenômenos Mecânicos , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Estereoisomerismo
10.
Inorg Chem ; 53(13): 6914-9, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24903856

RESUMO

We successfully demonstrate an approach based on linker fragmentation to create defects and tune the pore volumes and surface areas of two metal-organic frameworks, NU-125 and HKUST-1, both of which feature copper paddlewheel nodes. Depending on the linker fragment composition, the defect can be either a vacant site or a functional group that the original linker does not have. In the first case, we show that both surface area and pore volume increase, while in the second case they decrease. The effect of defects on the high-pressure gas uptake is also studied over a large temperature and pressure range for different gases. We found that despite an increase in pore volume and surface area in structures with vacant sites, the absolute adsorption for methane decreases for HKUST-1 and slightly increases for NU-125. However, the working capacity (deliverable amount between 65 and 5 bar) in both cases remains similar to parent frameworks due to lower uptakes at low pressures. In the case of NU-125, the effect of defects became more pronounced at lower temperatures, reflecting the greater surface areas and pore volumes of the altered forms.

11.
Adv Mater ; 26(17): 2725-9, 2617, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24523196

RESUMO

A new strategy to form ordered hierarchical supramolecular gels that incorporate graphene oxide (GO) sheets and cationic rigid macrocyles under mild conditions via self-assembly is demonstrated. These ordered gels are stabilized by a series of non-covalent - donor-acceptor, π-π stacking, cation-π - interactions. These theoretical studies indicate that cationic macrocycles are positioned in between GO layers with a substantial binding energy.


Assuntos
Géis/síntese química , Grafite/síntese química , Substâncias Macromoleculares/síntese química , Modelos Químicos , Nanoestruturas/química , Óxidos/síntese química , Hidrocarbonetos Policíclicos Aromáticos/síntese química , Cátions , Simulação por Computador , Cristalização/métodos , Teste de Materiais , Modelos Moleculares , Conformação Molecular , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície
12.
J Am Chem Soc ; 135(7): 2466-9, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23350705

RESUMO

The docking by neutral and charged guests selectively in two geometrically different binding pockets in a dynamic [2]catenane host is demonstrated in the solid state by manipulating its redox chemistry. The change in redox properties, not only alters the affinity of the host toward neutral and charged guests, but it also induces a profound change in the geometry of the host to accommodate them. X-ray crystallography, performed on the two different 1:1 complexes, demonstrates unambiguously the fact that the [2]catenane host provides a uniquely different binding pocket wherein a methyl viologen dication is stabilized by interacting with a bipyridinium radical cation, despite the presence of Coulombic repulsions.

15.
Proc Math Phys Eng Sci ; 468(2146): 2849-2880, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-22977353

RESUMO

The chemistry of mechanically interlocked molecules (MIMs), in which two or more covalently linked components are held together by mechanical bonds, has led to the coining of the term mechanostereochemistry to describe a new field of chemistry that embraces many aspects of MIMs, including their syntheses, properties, topologies where relevant and functions where operative. During the rapid development and emergence of the field, the synthesis of MIMs has witnessed the forsaking of the early and grossly inefficient statistical approaches for template-directed protocols, aided and abetted by molecular recognition processes and the tenets of self-assembly. The resounding success of these synthetic protocols, based on templation, has facilitated the design and construction of artificial molecular switches and machines, resulting more and more in the creation of integrated functional systems. This review highlights (i) the range of template-directed synthetic methods being used currently in the preparation of MIMs; (ii) the syntheses of topologically complex knots and links in the form of stable molecular compounds; and (iii) the incorporation of bistable MIMs into many different device settings associated with surfaces, nanoparticles and solid-state materials in response to the needs of particular applications that are perceived to be fair game for mechanostereochemistry.

16.
Chem Commun (Camb) ; 48(84): 10401-3, 2012 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22982882

RESUMO

A couple of [c2]daisy chains have been assembled in each case from four components in quantitative yields at room temperature in acetonitrile as a result of the self-templated clippings of their [24]crown-8 rings by reversible imine bond formation around secondary dialkylammonium recognition sites in their stalks.

17.
Chem Commun (Camb) ; 48(73): 9141-3, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22854807

RESUMO

Charged donor-acceptor [2]catenanes containing cyclobis(paraquat-p-phenylene) as the ring component can be synthesised in yields of up to 88% in under one hour by heating two precursors in the presence of macrocyclic polyether templates in N,N-dimethylformamide at 80 °C.

18.
Chem Soc Rev ; 41(14): 4827-59, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22648395

RESUMO

Manipulating and controlling the self-organisation of small collections of molecules, as an alternative to investigating individual molecules, has motivated researchers bent on processing and storing information in molecular electronic devices (MEDs). Although numerous ingenious examples of single-molecule devices have provided fundamental insights into their molecular electronic properties, MEDs incorporating hundreds to thousands of molecules trapped between wires in two-dimensional arrays within crossbar architectures offer a glimmer of hope for molecular memory applications. In this critical review, we focus attention on the collective behaviour of switchable mechanically interlocked molecules (MIMs)--specifically, bistable rotaxanes and catenanes--which exhibit reset lifetimes between their ON and OFF states ranging from seconds in solution to hours in crossbar devices. When these switchable MIMs are introduced into high viscosity polymer matrices, or self-assembled as monolayers onto metal surfaces, both in the form of nanoparticles and flat electrodes, or organised as tightly packed islands of hundreds and thousands of molecules sandwiched between two electrodes, the thermodynamics which characterise their switching remain approximately constant while the kinetics associated with their reset follow an intuitively predictable trend--that is, fast when they are free in solution and sluggish when they are constrained within closely packed monolayers. The importance of seamless interactions and constant feedback between the makers, the measurers and the modellers in establishing the structure-property relationships in these integrated functioning systems cannot be stressed enough as rationalising the many different factors that impact device performance becomes more and more demanding. The choice of electrodes, as well as the self-organised superstructures of the monolayers of switchable MIMs employed in the molecular switch tunnel junctions (MSTJs) associated with the crossbars of these MEDs, have a profound influence on device operation and performance. It is now clear, after much investigation, that a distinction should be drawn between two types of switching that can be elicited from MSTJs. One affords small ON/OFF ratios and is a direct consequence of the switching in bistable MIMs that leads to a relatively small remnant molecular signature--an activated chemical process. The other leads to a very much larger signature and ON/OFF ratios resulting from physical or chemical changes in the electrodes themselves. Control experiments with various compounds, including degenerate catenanes and free dumbbells, which cannot and do not switch, are crucial in establishing the authenticity of the small ON/OFF ratios and remnant molecular signatures produced by bistable MIMs. Moreover, experiments conducted on monolayers in MSTJs of molecules designed to switch and molecules designed not to switch have been probed directly by spectroscopic and other means in support of MEDs that store information through switching collections of bistable MIMs contained in arrays of MSTJs. In the quest for the next generation of MEDs, it is likely that monolayers of bistable MIMs will be replaced by robust crystalline extended structures wherein the switchable components, derived from bistable MIMs, are organised precisely in a periodic manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...