Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1936, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024459

RESUMO

Serine proteases (SP), including furin, trypsin, and TMPRSS2 cleave the SARS-CoV-2 spike (S) protein, enabling the virus to enter cells. Here, we show that factor (F) Xa, an SP involved in blood coagulation, is upregulated in COVID-19 patients. In contrast to other SPs, FXa exerts antiviral activity. Mechanistically, FXa cleaves S protein, preventing its binding to ACE2, and thus blocking viral entry and infection. However, FXa is less effective against variants carrying the D614G mutation common in all pandemic variants. The anticoagulant rivaroxaban, a direct FXa inhibitor, inhibits FXa-mediated S protein cleavage and facilitates viral entry, whereas the indirect FXa inhibitor fondaparinux does not. In the lethal SARS-CoV-2 K18-hACE2 model, FXa prolongs survival yet its combination with rivaroxaban but not fondaparinux abrogates that protection. These results identify both a previously unknown function for FXa and an associated antiviral host defense mechanism against SARS-CoV-2 and suggest caution in considering direct FXa inhibitors for preventing or treating thrombotic complications in COVID-19 patients.


Assuntos
COVID-19 , Fator Xa , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Rivaroxabana/farmacologia , Rivaroxabana/uso terapêutico , SARS-CoV-2/metabolismo , Internalização do Vírus , Antivirais/farmacologia
2.
J Virol ; 96(1): e0096421, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34668775

RESUMO

A comprehensive analysis and characterization of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection model that mimics non-severe and severe coronavirus disease 2019 (COVID-19) in humans is warranted for understating the virus and developing preventive and therapeutic agents. Here, we characterized the K18-hACE2 mouse model expressing human (h)ACE2 in mice, controlled by the human keratin 18 (K18) promoter, in the epithelia, including airway epithelial cells where SARS-CoV-2 infections typically start. We found that intranasal inoculation with higher viral doses (2 × 103 and 2 × 104 PFU) of SARS-CoV-2 caused lethality of all mice and severe damage of various organs, including lung, liver, and kidney, while lower doses (2 × 101 and 2 × 102 PFU) led to less severe tissue damage and some mice recovered from the infection. In this hACE2 mouse model, SARS-CoV-2 infection damaged multiple tissues, with a dose-dependent effect in most tissues. Similar damage was observed in postmortem samples from COVID-19 patients. Finally, the mice that recovered from infection with a low dose of virus survived rechallenge with a high dose of virus. Compared to other existing models, the K18-hACE2 model seems to be the most sensitive COVID-19 model reported to date. Our work expands the information available about this model to include analysis of multiple infectious doses and various tissues with comparison to human postmortem samples from COVID-19 patients. In conclusion, the K18-hACE2 mouse model recapitulates both severe and non-severe COVID-19 in humans being dose-dependent and can provide insight into disease progression and the efficacy of therapeutics for preventing or treating COVID-19. IMPORTANCE The pandemic of coronavirus disease 2019 (COVID-19) has reached nearly 240 million cases, caused nearly 5 million deaths worldwide as of October 2021, and has raised an urgent need for the development of novel drugs and therapeutics to prevent the spread and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To achieve this goal, an animal model that recapitulates the features of human COVID-19 disease progress and pathogenesis is greatly needed. In this study, we have comprehensively characterized a mouse model of SARS-CoV-2 infection using K18-hACE2 transgenic mice. We infected the mice with low and high doses of SARS-CoV-2 to study the pathogenesis and survival in response to different infection patterns. Moreover, we compared the pathogenesis of the K18-hACE2 transgenic mice with that of the COVID-19 patients to show that this model could be a useful tool for the development of antiviral drugs and therapeutics.


Assuntos
COVID-19/patologia , Modelos Animais de Doenças , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/imunologia , COVID-19/mortalidade , COVID-19/virologia , Humanos , Soros Imunes/imunologia , Queratina-18/genética , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Reinfecção/imunologia , Reinfecção/mortalidade , Reinfecção/patologia , Reinfecção/virologia , SARS-CoV-2/imunologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
3.
bioRxiv ; 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34127969

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic is caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human natural defense mechanisms against SARS-CoV-2 are largely unknown. Serine proteases (SPs) including furin and TMPRSS2 cleave SARS-CoV-2 spike protein, facilitating viral entry. Here, we show that FXa, a SP for blood coagulation, is upregulated in COVID-19 patients compared to non-COVID-19 donors and exerts anti-viral activity. Mechanistically, FXa cleaves the SARS-CoV-2 spike protein, which prevents its binding to ACE2, and thus blocks viral entry. Furthermore, the variant B.1.1.7 with several mutations is dramatically resistant to the anti-viral effect of FXa compared to wild-type SARA-CoV-2 in vivo and in vitro. The anti-coagulant rivaroxaban directly inhibits FXa and facilitates viral entry, whereas the indirect inhibitor fondaparinux does not. In a lethal humanized hACE2 mouse model of SARS-CoV-2, FXa prolonged survival while combination with rivaroxaban but not fondaparinux abrogated this protection. These preclinical results identify a previously unknown SP function and associated anti-viral host defense mechanism and suggest caution in considering direct inhibitors for prevention or treatment of thrombotic complications in COVID-19 patients.

4.
J Fungi (Basel) ; 7(1)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467393

RESUMO

Paracoccidioidomycosis is an endemic fungal disease to Latin America caused by at least five species-level genotypes of Paracoccidioides, named P. lutzii, P. brasiliensis (S1a and S1b populations), P. americana, P. restrepiensis, and P. venezuelensis. In this manuscript, we report on Paracoccidioides sp. sampling efforts in armadillos from two different areas in Brazil. We sequenced the genomes of seven Paracoccidioides isolates and used phylogenomics and populations genetics for genotyping. We found that P. brasiliensis and P. lutzii are both present in the Amazon region. Additionally, we identified two Paracoccidioides isolates that seem to be the result of admixture between divergent populations within P. brasiliensis sensu stricto. Both of these isolates were recovered from armadillos in a P. lutzii endemic area in Midwestern Brazil. Additionally, two isolates from human patients also show evidence of resulting from admixture. Our results suggest that the populations of P. brasiliensis sensu stricto exchange genes in nature. More generally, they suggest that population structure and admixture within species is an important source of variation for pathogenic fungi.

5.
Microbiol Resour Announc ; 8(33)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31416856

RESUMO

Coccidioides fungi are widely distributed in the American continents, with an expanding western range documented by a recently discovered cryptic population of Coccidioides immitis in Washington State. The assembled and annotated reference genome sequence of the soil-derived C. immitis strain WA_211 will support population and functional genomics studies.

6.
Sci Rep ; 9(1): 11789, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409874

RESUMO

Histoplasmosis is a worldwide-distributed deep mycosis that affects healthy and immunocompromised hosts. Severe and disseminated disease is especially common in HIV-infected patients. At least 11 phylogenetic species are recognized and the majority of diversity is found in Latin America. The northeastern region of Brazil has one of the highest HIV/AIDS prevalence in Latin America and Ceará State has one of the highest death rates due to histoplasmosis in the world, where the mortality rate varies between 33-42%. The phylogenetic distribution and population genetic structure of 51 clinical isolates from Northeast Brazil was studied. For that morphological characteristics, exoantigens profile, and fungal mating types were evaluated. The genotypes were deduced by a MSLT in order to define local population structure of this fungal pathogen. In addition, the relationships of H. capsulatum genotypes with clinically relevant phenotypes and clinical aspects were investigated. The results suggest two cryptic species, herein named population Northeast BR1 and population Northeast BR2. These populations are recombining, exhibit a high level of haplotype diversity, and contain different ratios of mating types MAT1-1 and MAT1-2. However, differences in phenotypes or clinical aspects were not observed within these new cryptic species. A HIV patient can be co-infected by two or more genotypes from Northeast BR1 and/or Northeast BR2, which may have significant impact on disease progression due to the impaired immune response. We hypothesize that co-infections could be the result of multiple exposure events and may indicate higher risk of disseminated histoplasmosis, especially in HIV infected patients.


Assuntos
Infecções por HIV/genética , Histoplasma/genética , Histoplasmose/genética , Filogenia , Adulto , Brasil/epidemiologia , Feminino , Variação Genética/genética , Genótipo , HIV/genética , HIV/patogenicidade , Infecções por HIV/microbiologia , Infecções por HIV/patologia , Infecções por HIV/virologia , Haplótipos/genética , Histoplasma/patogenicidade , Histoplasmose/microbiologia , Histoplasmose/patologia , Histoplasmose/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Emerg Microbes Infect ; 7(1): 46, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29593263

RESUMO

A wide range of mammals are susceptible to infection by the fungal species Coccidioides immitis and C. posadasii. In humans, 60% of infections are asymptomatic; however, certain patients may develop a severe and deep systemic mycosis called coccidioidomycosis. Genetic analysis suggests that the majority of clinical isolates recovered from South America are C. posadasii; however, little is known about the prevalence, species distribution, and ecological factors that favor the occurrence of this pathogen in those areas. By using a combined quantitative polymerase chain reaction (qPCR)-based approach and mycobiome amplicon sequencing, we provide evidence that at least two genotypes of C. posadasii are found in the xerophytic environment in Venezuela. We detected a 3806-fold range in the amount of Coccidioides DNA when comparing among the sampled locations, which indicates that human exposure risk is variable, and is one critical factor for disease manifestation. We identified fungal communities that are correlated with a higher prevalence of C. posadasii, suggesting that a combination of specific microbes and a xeric microenvironment may favor the growth of Coccidioides in certain locations. Moreover, we discuss the use of a combinatorial approach, using both qPCR and deep-sequencing methods to assess and monitor fungal pathogen burden at outbreak sources.


Assuntos
Coccidioides/genética , Coccidioides/isolamento & purificação , Coccidioidomicose/epidemiologia , Microbiologia do Solo , Animais , Coccidioides/crescimento & desenvolvimento , Coccidioides/patogenicidade , Coccidioidomicose/diagnóstico , Coccidioidomicose/microbiologia , Surtos de Doenças/prevenção & controle , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Camundongos , Micobioma/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Venezuela/epidemiologia
8.
Clin Microbiol Rev ; 26(3): 505-25, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23824371

RESUMO

Coccidioidomycosis is the endemic mycosis caused by the fungal pathogens Coccidioides immitis and C. posadasii. This review is a summary of the recent advances that have been made in the understanding of this pathogen, including its mycology, genetics, and niche in the environment. Updates on the epidemiology of the organism emphasize that it is a continuing, significant problem in areas of endemicity. For a variety of reasons, the number of reported coccidioidal infections has increased dramatically over the past decade. While continual improvements in the fields of organ transplantation and management of autoimmune disorders and patients with HIV have led to dilemmas with concurrent infection with coccidioidomycosis, they have also led to advances in the understanding of the human immune response to infection. There have been some advances in therapeutics with the increased use of newer azoles. Lastly, there is an overview of the ongoing search for a preventative vaccine.


Assuntos
Coccidioides/fisiologia , Coccidioidomicose/epidemiologia , Coccidioidomicose/microbiologia , Animais , Coccidioides/imunologia , Coccidioidomicose/imunologia , Microbiologia Ambiental , Humanos , Sudoeste dos Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...