Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Contam Hydrol ; 150: 35-44, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23660235

RESUMO

One pore volume of unactivated sodium persulfate was delivered into an emplaced gasoline residual source zone at CFB Borden. Concentrations of inorganic species (S2O8(2-), SO4(2-), Na(+), dissolved inorganic carbon (DIC)) and selected gasoline compounds (benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes and naphthalene) were monitored across a transect equipped with 90 multilevel sampling points for >10months post-injection. Mass loading (M˙) of compounds constructed from the transect data was used for assessment purposes. Breakthrough of inorganic species was observed when the injection slug crossed the monitoring transect. An increase in [Formula: see text] indicated persulfate consumption during oxidation of gasoline compounds or degradation due to the interaction with aquifer materials. M˙DIC increased by >100% suggesting some mineralization of gasoline compounds during treatment. Mass loading for all the monitored gasoline compounds reduced by 46 to 86% as the inorganic slug crossed the monitoring transect. The cumulative mass discharge across the monitoring transect was 19 to 58% lower than that expected without persulfate injection. After the inorganic injection slug was flushed from the source zone a partial rebound (40 to 80% of baseline levels) of mass discharge of the monitored gasoline compounds was observed. The ensemble of data collected provides insight into the fate and transport of the injected persulfate solution, and the accompanying treatment of a gasoline the source zone.


Assuntos
Gasolina , Compostos de Sódio/química , Sulfatos/química , Poluentes Químicos da Água/química , Monitoramento Ambiental , Recuperação e Remediação Ambiental/métodos , Água Subterrânea , Ontário , Sódio/química
2.
Environ Sci Technol ; 44(8): 3098-104, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20205387

RESUMO

Batch and stop-flow column experiments were performed to estimate persulfate decomposition kinetic parameters in the presence of seven well-characterized aquifer materials. Push-pull tests were conducted in a sandy aquifer to represent persulfate decomposition under in situ conditions. The decomposition of persulfate followed a first-order rate law for all aquifer materials investigated. Reaction rate coefficients (k(obs)) increased by an order of magnitude when persulfate concentration was reduced from 20 g/L to 1 g/L, due to ionic strength effects. The column experiments yielded higher k(obs) than batch experiments due to the lower oxidant to solids mass ratio. The kinetic model developed from the batch test data was able to reproduce the observed persulfate temporal profiles from the push-pull tests. The estimated k(obs) indicate that unactivated persulfate is a persistent oxidant for the range of aquifer materials explored with half-lives ranging from 2 to 600 d.


Assuntos
Sulfatos/análise , Poluentes da Água/análise , Água/química , Meia-Vida , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA